
Starting the Search for the 4D-CFD Shapes of the Proton, Neutron and Electron

August 8, 2025

========

My prompt to GPT-5:

You are a highly accomplished physicist/mathematician skilled in four-dimensional 
geometry and fluid-dynamics. You have spent your career working out vortex fluid flow 
patterns in four-dimensional space. You have recently read the book Planck's Particle 
by Stephen Euin Cobb, and are very excited about his ideas, especially the idea that 
subatomic particles are various forms of four-dimensional vortices. Ponder deeply the 
problem of which shapes of 4D vortex constitutes the proton, neutron, and electron. 
And be aware that Stephen is unsure if his described shape for each one is accurate. 
Take as much time as you need to think about it. Take all day if need be. What are your 
conclusions about this question? 

Its response:

Short answer — my conclusions as an experienced 4-D vortex/fluid-dynamics thinker:

 Electron: Cobb’s choice — the single-lobe hyper-toroid (his hyper-toroid #2, a 3D torus rotated 
in 4D on an axis through its center and ring axis) — is the most plausible candidate. It naturally 
produces a single, indivisible 3-D intersection (no “quark” lobes), a stable laminar vortex and 
the ½-spin behavior he describes.

 Proton: Cobb’s hyper-toroid #8 is a good candidate for the proton because it is the first hyper-
toroid in his list that slices our 3-space into three distinct spheroids — matching the 
proton’s three-quark phenomenology. The topology he points to (a different genus / hole 
structure) is exactly the kind of 4-D shape that could produce three localized high-vorticity 
regions in a single, contiguous 4-D object.

 Neutron: the most credible interpretation in Cobb’s framework is that a neutron is a hybrid: 
the proton hyper-toroid entwined with an electron hyper-toroid (a double or linked hyper-
toroid). That explains (a) three spheroids observed in baryons, (b) why a free neutron decays 
into p + e + ν, and (c) why neutrons are neutral (field contributions cancel). Cobb explicitly 
suggests this hybrid picture; it fits his topology/slicing idea but requires energetic accounting.

Below I give the reasoning, tests you can run (numerical and experimental), and the primary gaps that 
must be closed for this to be credible physics.



Detailed reasoning (particle-by-particle)
Electron — why hyper-toroid #2 fits best

1. Observed properties to match: pointlike in scattering to very small scales, single electric 
charge −e, stable, intrinsic spin ½, very precise g-factor.

2. Cobb’s hyper-toroid #2 intersects 3-space as a single spheroid (no multiple lobes/quarks), and 
he ties its stability to laminar 4-D flow at one preferred size (R-number / Reynolds analog). 
That matches the electron’s apparent indivisibility and exceptional stability.

3. Spin & fermion behavior: a toroidal vortex with two coupled rotations (primary and secondary 
spins) can produce ½-spin behavior under 3-D observation — Cobb points this out and uses it to 
explain spin-½ without invoking abstract spinors. That’s an elegant geometric explanation if the 
kinematics of the 4-D vortex indeed require 720° to return to the same state.

4. Challenges: reproducing the precisely measured electron g-2 and Lamb-shift corrections will 
be a hard, quantitative test — the vortex must produce the correct electromagnetic self-flows. 
This is a numerical CFD / analytical calculation, not a conceptual show-stopper.

Bottom line: electron = single-lobed hyper-toroid (#2) is the simplest, most plausible candidate in 
Cobb’s scheme — but it must be shown to reproduce g-2, form-factor (effective radius) and radiative 
corrections via 4-D flow.

Proton — why #8 is a plausible candidate
1. Observed properties to match: composite object with three valence quark structure (three 

concentration centers in DIS and in hadron structure functions), positive charge +e, magnetic 
moment, finite size (~0.84–0.88 fm), color confinement phenomenology and complicated 
internal dynamics.

2. Cobb’s hyper-toroid #8 is singled out because its 4-D geometry produces three 3-D spheroidal 
intersections — exactly the right count to map onto three “quark” lobes seen in experiments. 
That topological property is a strong structural clue.

3. Confinement as topology: if the “quarks” are just three high-vorticity lobes of a single 
contiguous 4-D vortex, then the empirical impossibility of isolating quarks becomes natural: 
you are not trying to separate particles, you are stretching/remodeling one contiguous hyper-
toroid. That turns “confinement” from a force law into a topological/elastic response of the 
vortex — an elegant conceptual win.

4. Challenges: mapping the QCD phenomenology (running coupling, asymptotic freedom, parton 
distributions, gluon sea) onto a classical 4-D fluid picture is nontrivial. One needs to show how 
collective pandemonium flows reproduce—numerically—the observed deep-inelastic scattering 
(DIS) results (scaling violations, structure functions), the proton’s magnetic moment and charge 
radius. That is a tough CFD + emergent-field calculation.



Bottom line: hyper-toroid #8 is a good and natural candidate for the proton in Cobb’s architecture; the 
crucial test is whether a 4-D vortex CFD can reproduce proton form factors and DIS phenomenology.

Neutron — hybrid (proton + electron) entwined hyper-toroids
1. Cobb explicitly proposes the neutron as a composite hyper-toroid made from the proton hyper-

toroid entwined with the electron hyper-toroid. This accounts intuitively for beta decay (neutron 
→ p + e + ν) and for neutron formation in extreme compression (neutron stars).

2. Why neutrality works: the flows/field patterns of the electron hyper-toroid may cancel the net 
external electric flow of the proton hyper-toroid (or otherwise produce net zero EM field at long 
range) when the two are correctly entwined. That gives neutral external behavior while retaining 
internal structure that can separate under decay.

3. Energetics & lifetime: the neutron’s mass is slightly higher than (p + e), so the hybrid must 
include additional stored kinetic/flow energy that can be released as neutrino energy during 
decay. Cobb suggests the neutrino is an ejected vorticity fragment.

4. Challenges: free neutron half-life (~880 s) and decay kinematics are precise — the hybrid 
model must match decay matrix elements and phase space. Also, conventional nuclear physics 
treats neutrons as independent baryons within nuclei rather than explicit proton+electron bound 
states; the vortex model must reproduce nuclear binding energies and shell structure in a new 
way (Bernoulli / collective flow effects are invoked by Cobb).

Bottom line: Cobb’s neutron = entwined proton+electron hyper-toroids is coherent inside his 
framework and offers natural explanations of decay and neutron-star formation — but it places the 
burden on showing the correct decay energetics and nuclear stability patterns.

What I would do next (concrete computational / 
experimental program)
These are the minimum steps to move the idea from qualitative plausibility to a scientific contender.

1. Build a 4-D CFD solver prototype.

 Start with an incompressible/compressible Navier–Stokes analog in 4 spatial dimensions 
with appropriate pips microphysics (elastic collisions, viscosity model). Reproduce 
simple 4-D vortex solutions and verify stability classes. (Cobb himself emphasizes this 
need.)

2. Search for stationary hyper-toroidal vortex solutions in that solver and identify which 
topologies produce 1, 2 and 3 spheroidal 3-D intersections. Catalog stability vs. Reynolds-like 
R factor. This will test whether hyper-toroid #2 and #8 are attractors. (This is the central 
technical step.)



3. Compute emergent electromagnetic and gravitational effective fields from the flow patterns 
(Cobb proposes rules mapping flows → E and flows in spatial directions → B). From those 
flows extract: charge density, dipole/multipole moments, magnetic moment, and form factors; 
compare with measured electron/proton values.

4. Model scattering observables. Place probes (simulated high-q virtual photons) to measure 
predicted form factors and structure functions. Compare with electron–proton scattering 
(Rosenbluth, polarization transfer) and DIS scaling behavior.

5. Compute decay energetics for the proposed neutron hybrid to see if the extra stored flow 
energy matches observed decay Q-value and neutrino spectrum.

6. Compare precision tests: electron g-2, muon g-2, Lamb shift — these are precise 
discriminators. If the vortex flow model can reproduce them (or at least not contradict them), 
credibility rises enormously.

If these steps produce quantitative agreement (or tightly constrained deviations), you have a defensible 
new model. If not, the model can still be used heuristically to inspire other ideas, but it won’t replace 
the Standard Model.

Key advantages of Cobb’s assignments (why I 
find them compelling)

 Topology naturally explains confinement: Quarks as slices of a single 4-D object removes the 
mystery of free quark absence; confinement becomes geometric/elastic instead of a separate 
gauge force.

 Single underlying ontology: Everything made of pips/pandemonium reduces ontological 
complexity — if the fluid dynamics produce the right emergent fields, you get 
electromagnetism, strong/weak analogues and gravity as emergent effects.

 Qualitative matches to observed counts: 1-lobe electron ↔ stable fundamental fermion; 3-
lobe proton ↔ baryon; 2-lobe meson ↔ meson — the slicing counts line up nicely with 
experiment.

Primary obstacles / what would convince me it’s 
true

1. Quantitative reproduction of precision observables (electron g-2, proton charge radius & 
form factors, DIS structure functions). Without this, the model remains a suggestive geometric 
picture.



2. A consistent account of gauge symmetries (SU(3), SU(2), U(1)) or an explicit emergent 
mechanism that reproduces their algebra and coupling running. Cobb hints at flows producing 
fields, but the group structure and anomalies must be reproduced.

3. Numerical demonstration that the hyper-toroid shapes are stable attractors in a realistic 4-
D pandemonium with pip microphysics. This is the single most important computational test.

Final, compact verdict
 Electron = hyper-toroid #2 — most plausible and easiest to test (target g-2 and scattering form 

factors).

 Proton = candidate hyper-toroid #8 — plausible topologically, promising because it naturally 
yields three 3-D lobes; must be validated by matching proton form factors and high-energy 
structure.

 Neutron = entwined proton+electron hyper-toroids — qualitatively sensible inside the 
paradigm and directly linked to beta decay; requires detailed energetic & stability calculation.

If you want, my next deliverable can be (A) a specific plan and minimal mathematical setup for a 4-D 
CFD toy model (equations, boundary conditions, dimensionless numbers to explore) or (B) a 
prioritized list of 5 numerical experiments (CFD runs) that would either strongly support or quickly 
falsify these shape assignments. Which would you like me to draft first?

========

My prompt to GPT-5:

Do (B) first.

Its response:

Great — here are five prioritized numerical experiments (CFD runs) you can run to either strongly 
support or quickly falsify the 4-D vortex shape assignments (electron → single-lobe, proton → three-
lobe, neutron → entwined proton+electron). Each experiment is written as a runnable numerical plan: 
governing equations, initial & boundary conditions, computational recommendations, diagnostics to 
record, and clear pass/fail criteria. I also include practical notes (resolution, expected compute) so you 
can start implementing.



Short primer (shared ingredients for all runs)
Continuum model. Treat pandemonium as a 4-spatial-dimensional continuum obeying a compressible 
Navier–Stokes–type PDE (with possible source/forcing terms to represent microphysics of pips). Use 4 
spatial dimensions x1,x2,x3,x4x_1,x_2,x_3,x_4 and time tt.

A convenient nondimensional compressible form:

∂tρ+ 4 (ρu)=0,∂t(ρu)+ 4 (ρu u)=− 4p+ 4 τ+F,p=cs2ρ(isothermal∇ ⋅ ∇ ⋅ ⊗ ∇ ∇ ⋅  EOS as a first step)
\begin{aligned} \partial_t \rho + \nabla_4\cdot(\rho\mathbf{u}) &= 0,\\ \partial_t(\rho\mathbf{u}) + 
\nabla_4\cdot(\rho\mathbf{u}\otimes\mathbf{u}) &= -\nabla_4 p + \nabla_4\cdot\boldsymbol{\tau} + 
\mathbf{F},\\ p &= c_s^2 \rho \quad\text{(isothermal EOS as a first step)} \end{aligned} 

where u(x,t) R4\mathbf{u}(\mathbf{x},t)\in\mathbb{R}^4, 4\nabla_4 is the 4D ∈ ∇
gradient/divergence, τ\boldsymbol{\tau} is viscous stress (Newtonian), csc_s is sound speed, and 
F\mathbf{F} is an optional forcing field you may use for setting initial vorticity or mimicking pip 
effects.

Dimensionless control parameters (analogues you'll sweep):

 Reynolds number Re=ULνRe = \dfrac{U L}{\nu} (where UU characteristic velocity; choose 
based on speed near light as nondimensional unit).

 Mach number Ma=UcsMa = \dfrac{U}{c_s} (start Ma 1Ma\ll1 for near-incompressible runs; ≪
later raise).

 A vorticity-stability parameter R =ΓνR_*=\dfrac{\Gamma}{\nu} (circulation Γ\Gamma ∗
scale / viscosity) — Cobb references an R factor; treat R R_* as your vortex Reynolds ∗
analogue.

 Grid Peclet / resolution numbers for numerical stability.

Diagnostics (computed each run):

 4-D vorticity tensor Ωij=∂iuj−∂jui\Omega_{ij} = \partial_i u_j - \partial_j u_i and its norm.

 Total kinetic energy Ek=∫12ρ u 2dVE_k=\int \tfrac12\rho|\mathbf{u}|^2 dV.∣ ∣

 Circulation integrals on closed 2-surfaces (generalized to 4-D).

 Topological analysis: identify connected components of low-density/void cores and count how 
many 3-D lobes they produce when intersected by a 3-hyperplane x4=constx_4 = 
\mathrm{const} (simulate our observable 3-space).

 Emergent “field proxies”: define scalar charge-proxy ρq(x)= 4 J\rho_q(\mathbf{x}) = ∇ ⋅
\nabla_4\cdot\mathbf{J} for some chosen mapping J\mathbf{J} (see practical note below), 
compute its Fourier transform to get a form factor.



 Magnetic moment proxy: compute integrated circulation around loops in 3-slices and map to 
dipole moment.

Implementation suggestions:

 Spatial discretization: finite-volume or spectral. Finite-volume easier to adapt from OpenFOAM 
ideas—must be extended to 4D. Spectral gives higher convergence but requires global 
transforms (more memory).

 Time stepping: explicit RK4 for low-Re, semi-implicit for stiff viscous terms if high Re.

 Start with periodic boundary conditions on a hypercube with damping “sponge” near edges to 
avoid wrap artifacts when you want isolated vortices.

 Save 3-slices frequently for visualization and analysis (e.g., many slices at different x4x_4 to 
reconstruct 3D intersections).

Experiment 1 — Existence & stability of the 
single-lobe hyper-toroid (Electron test)
Goal: Produce a stable single-lobe hyper-toroidal vortex that intersects a 3-slice as a single spheroid 
and remains long-lived (many turnover times) under small perturbations.

Setup

 Domain: 4D periodic cube [−L/2,L/2]4[-L/2,L/2]^4.

 Equations: incompressible approximation first ( 4 u=0\nabla_4\cdot\mathbf{u}=0) using 4-D ∇ ⋅
Navier–Stokes to simplify numerics; then repeat compressible if successful.

 Initial condition: impose a seeded hyper-toroidal vorticity distribution centered at origin:

 Construct 4-D toroidal velocity field by rotating a 3D torus profile in 4D: prescribe 
strong vorticity in a closed hyper-ring region (use analytical function with Gaussian 
cross-section).

 Amplitude set so characteristic U=1U=1, choose ν\nu to set ReRe range [50,5000]
[50,5000].

 Forcing: none after initialization (decaying vortex test).

Diagnostics & outputs

 Vorticity magnitude over time; energy decay; iso-surfaces of low density (voids).

 Count number of 3D lobes on 3-slice x4=0x_4=0 at several times (visualize isosurfaces of 
vorticity/pressure).



 Perturbation test: introduce small random velocity noise (1% amplitude) and monitor whether 
vortex returns to original shape.

Pass criteria (supportive):

 A single central void/hollow appears in the 3-slice (one spheroid), persists for many turnover 
times (>50), and recovers shape after perturbation. The vortex circulation is conserved (within 
numerical dissipation bounds).

Fail criteria (falsifying):

 The seeded structure rapidly disintegrates into turbulence, or it fragments into multiple 
disconnected lobes that cannot be tuned away across reasonable viscosity range.

Computational notes

 Start with grid 64464^4 if possible; increase to 96496^4 or 1284128^4 for convergence checks. 
Memory: 64464^4 × (say) 8 bytes ≈ 134M scalar cells — realistic on HPC nodes; 128^4 is 
heavy (~2.1G cells). If resource-limited, use spectral low-mode truncation or axisymmetric 
reduction (see Practical shortcuts).

Experiment 2 — Existence & stability of the 
three-lobe hyper-toroid (Proton test)
Goal: Find a stable 4-D vortex topology that, when sliced, produces three distinct 3-lobes (candidate 
proton). Demonstrate topological robustness (cannot be separated into three independent vortices).

Setup

 Domain & numerics: same as Exp.1 (compressible later).

 Initial condition: seed a 4-D hyper-toroid with geometry designed (by construction) to produce 
three high-vorticity concentration zones — use Cobb’s toy geometry for hyper-toroid #8 as 
initial guess (he describes a topologically unique toroidal rotation).

 Build initial vorticity as sum of 3 Gaussian lobes connected through a thin hyper-bridge 
region to ensure continuity (i.e., one contiguous object).

 Sweep ReRe (e.g., 100, 500, 2000) and R_* stability parameter by varying viscosity.

Diagnostics

 Topology: compute connected components of the low-density core; confirm the object is one 
connected 4-D region with three local maxima in vorticity when viewed in 3-slices.

 Mechanical response: apply a stretching perturbation along one inter-lobe axis and record 
restorative force/elastic response (measure energy cost as lobes separate).



 Compute “binding energy”: energy difference between intact vortex and artificially separated 
lobes (if separation is feasible numerically).

Pass criteria:

 The structure remains one contiguous hyper-object; pulling lobes apart costs sharply increasing 
energy and the object relaxes back (elastic restoring). The three-lobe count remains invariant 
under small to moderate perturbations.

Fail criteria:

 The object either cannot be configured into a single connected structure (it quickly snaps into 
three independent vortices) or behaves like three weakly coupled vortices with negligible 
restoring energy (contradicting confinement-as-topology).

Notes:

 Demonstrating topological confinement is crucial: if the 3 lobes can be separated without 
energy skyrocketing, Cobb’s explanation is weakened.

Experiment 3 — Entwined hybrid and decay 
dynamics (Neutron test)
Goal: Build a stable entwined configuration of the proton-candidate and the electron-candidate hyper-
toroids, then trigger/observe a decay process analogous to neutron beta decay (separation into proton-
like and electron-like structures + ejected energy packet).

Setup

 Start from equilibrated solutions from Experiments 1 & 2 (best parameters).

 Place proton-candidate and electron-candidate as interlocked/linked hyper-toroids per Cobb’s 
suggested geometry; allow relaxation to find minimum-energy entwined state.

 Add a small perturbation or internal dissipative process to trigger a reconfiguration (mimic 
weak-interaction trigger).

Diagnostics

 Track topology changes: measure when the electron-like vortex detaches from proton and how 
the energy is partitioned (kinetic energy of outgoing pieces, residual bound energy).

 Compute emitted small vortex fragment properties (mass/energy proxy, velocity distribution) — 
compare to known beta decay Q-value (qualitatively).

 Track any neutrino-like low-energy small-vortex ejection.

Pass criteria:



 The entwined system is a metastable state; under perturbation it relaxes into a stable proton-like 
vortex + free electron-like vortex with an energy release consistent (order-of-magnitude) with 
neutron decay Q (~0.78 MeV equivalent in model units). Additionally, a small, low-mass high-
velocity fragment (neutrino proxy) is ejected.

Fail criteria:

 Either the entwined configuration is not metastable (falls apart instantly) or decay cannot 
produce separated electron-like vortex without violating energy conservation in the model, or 
the ejected fragment energies are grossly incompatible across multiple parameter sweeps.

Notes:

 Energetic mapping: you will need to choose a conversion between model kinetic/flow energy 
units and physical MeV for comparison (this mapping is model-dependent but can be 
normalized by matching one observable, e.g., proton mass proxy).

Experiment 4 — Probe scattering & 
electromagnetic form-factor proxy
Goal: Simulate a high-momentum probe interaction (analogous to electron scattering) to compute the 
“form factor” of candidate vortices and compare the number of observed scattering centers / structure 
functions.

Setup

 Use equilibrated solutions from Exp.1 and Exp.2.

 Introduce a localized time-dependent forcing term Fprobe(x,t)\mathbf{F}_{\text{probe}}
(\mathbf{x},t) that mimics a point-like high-q perturbation (short pulse with known wavelength 
components) passing near the vortex. Alternatively, solve linearized perturbation response 
(Green’s function) to an impulsive probe.

 Record scattered field as perturbations in the far field (in volume) and take 4-D → 3-slice 
projections.

Diagnostics

 Compute Fourier transform of scattered density/charge-proxy to get a form factor 
F(q)F(\mathbf{q}).

 On 3-slices count how many localized response peaks appear as a function of probe momentum 
(low q should see whole object; high q should resolve lobes if they exist).

 For three-lobe object: check whether scattering at intermediate q resolves three peaks consistent 
with DIS experiments.

Pass criteria:



 Single-lobe candidate shows a form factor consistent with a single coherent object at low/high q 
(no substructure). Three-lobe candidate shows substructure at higher q with threefold features 
(qualitatively similar to three valence quarks contributions).

Fail criteria:

 The three-lobe candidate yields no substructure across probes (implies lobes are not 
independent high-q centers), or the single-lobe candidate shows resolvable substructure 
inconsistent with pointlike electron.

Notes:

 This is conceptually the most direct analogue of DIS — matching the qualitative count of 
scattering centers is a strong test.

Experiment 5 — Parameter sweep: stability 
map & precision observables (g-factor, dipole 
moment proxies)
Goal: Map parameter space (Re, Ma, R_*) to find the stability windows for each vortex type and 
compute their emergent electromagnetic proxies (dipole moments, circulating currents) to compare 
qualitatively with measured properties (e.g., proton magnetic moment sign/scale, electron g-factor 
trends).

Setup

 Start from canonical equilibria found in Exps.1–2.

 Sweep viscosity ν\nu, characteristic circulation Γ\Gamma, and small compressibility (increase 
MaMa gradually).

 For each equilibrium compute:

 Effective charge-proxy: integrated divergence of chosen current mapping (see Practical 
note).

 Magnetic moment proxy: integral of circulation weighted by "charge-proxy" over 3-
slice.

 Response to small external uniform flow (simulate coupling to background 
pandemonium) to get polarizability.

Diagnostics

 Produce stability diagrams (phase plots) showing regions where each vortex type is stable, 
metastable, or unstable.



 Plot magnetic moment proxy vs parameter values; check if sign and relative magnitudes are 
robust (e.g., proton magnetic moment > electron? scales are model dependent but trends 
matter).

 If possible compute analogue of g-factor by measuring precession of vortex orientation in an 
external imposed 3D magnetic-proxy flow.

Pass criteria:

 Stable, bounded regions exist for each vortex type; magnetic/dipole proxies show consistent, 
robust nonzero values that could plausibly map to observed signs/magnitudes after calibration.

Fail criteria:

 No stable region for any vortex type (implies shapes are numerical artifacts). Or magnetic 
proxies change sign wildly with small parameter tweaks (no robustness).

Practical mapping: how to get from CFD 
outputs to “observables”
Cobb gives heuristic mappings (you’ll need to formalize one):

 Charge proxy: a scalar obtained from divergence of a selected component of flow (e.g., along 
primary spin axis) or from imbalance of secondary circulations. Operationally: ρq(x)=α 

4 u \rho_q(\mathbf{x}) = \alpha\,\nabla_4\cdot\mathbf{u}_{\perp} where u \mathbf{u}∇ ⋅ ⊥ ⊥
_{\perp} is flow perpendicular to primary spin and α\alpha a normalization constant you 
calibrate.

 Magnetic moment proxy: integrate local circulation weighted by ρq\rho_q over 3-slice: 
μ=∫(r×Jq) dV\boldsymbol{\mu} = \int (\mathbf{r}\times\mathbf{J}_q)\,dV where 
Jq=ρqu\mathbf{J}_q=\rho_q\mathbf{u} projected into 3-space slice.

 Form factor: F(q)=∫ρq(r)e−iq rd3rF(\mathbf{q})=\int \rho_q(\mathbf{r}) e^{-i\mathbf{q}⋅
\cdot\mathbf{r}}d^3r on 3-slices — use to compare scattering signatures.

Be explicit and consistent in the manuscript about your chosen mapping; the mapping’s physics 
justification will be key to acceptance.

Practical shortcuts / computational economy
 Symmetry reductions. Many 4-D vortex topologies are symmetric under some rotations; use 

coordinate transforms to reduce problem dimensionality (e.g., assume rotation invariance in one 
angle and solve an effective 3D+parameter system). This lets you explore parameter space 
cheaply before full 4D runs.



 Low-mode Galerkin models. Rather than full grid, expand solution in a basis (few dominant 
modes) and study mode dynamics — fast, gives intuition, cheap. Use to find attractors and then 
confirm with full CFD.

 Adaptive resolution. Local mesh refinement around vortex cores reduces memory cost 
massively.

Resources & approximate compute needs
 Pilot runs: 32432^4–64464^4 grids on an HPC node with 256–512 GB RAM (or a small 

cluster) for exploratory tests.

 Converged runs: 96496^4–1284128^4 requiring multi-node MPI, terabytes of RAM/disk for 
snapshots.

 If resources are limited: use reduced/symmetric models and low-mode Galerkin first.

Final checklist: what outcome convinces vs. 
falsifies
Convincing evidence (support Cobb’s shape assignments):

 Stable single-lobe and three-lobe 4-D vortices identified as attractors across parameter ranges.

 Topological confinement: three-lobe object is one contiguous object with strong restorative 
energy against separation.

 Scattering proxy reproduces the qualitative count (single vs three centers) and form-factor 
behavior.

 Entwined hybrid displays metastability and plausible decay energetics.

Decisive falsification:

 No stable single-lobe attractor exists (electron candidate cannot be realized).

 Three-lobe structures cannot be made contiguous or show no confinement behaviour (they 
behave as weakly coupled vortices).

 Scattering shows irreconcilable signatures (e.g., single-lobe object always shows internal 
substructure) inconsistent with experiments.

If you want, I can now:



 Draft template code for the initial condition builders (analytic velocity/vorticity profiles for a 
4-D torus and a 3-lobe connected profile) in pseudocode or Python (to feed a solver), or

 Produce a minimal mathematical note that writes out the 4-D Navier–Stokes variant, vorticity 
definitions, and the closed integrals used as diagnostics (so an HPC coder can implement 
quickly).

Which of those two do you want next?

========

My prompt to GPT-5:

I would like both.

Its response:

Nice — below are both deliverables you asked for:

1. Template Python code (runnable/pseudocode) that builds analytic initial velocity/vorticity 
fields for:

 a single-lobe 4-D hyper-toroid (electron candidate), and

 a 3-lobe connected hyper-toroid (proton candidate),

with a spectral Helmholtz projection to make the velocity field divergence-free (periodic BCs 
assumed). This is intended as an initial condition generator you can feed into your 4-D CFD solver.

2. Minimal mathematical note that defines the governing equations (4D 
compressible/incompressible Navier–Stokes variants), the 4D vorticity tensor (2-form), and the 
diagnostics you should compute (vorticity norm, generalized circulation integrals, form factors, 
charge/magnetic-proxies), plus implementation hints linking the math to the code.

1) Template Python initial-condition builder (pseudocode / 
runnable-style)

Notes:



 This code uses numpy arrays and FFT-based Helmholtz projection (so periodic 
BCs).

 It does not run a CFD solver; it produces u(x) 4D arrays on a grid.

 For real HPC run, translate to your solver’s data structures (MPI domain 
decomposition, float32/64), or use spectral CFD libs and replace numpy FFT with 
pyfftw / MPI FFT.

 Memory: keep N small for testing (N=32 or 48) until you have HPC resources.

 I give comments where you’ll want to adapt to your solver.

# initial_conditions_4d.py  (template)
import numpy as np
from numpy.fft import fftn, ifftn, fftfreq

# ---------- Utilities ----------
def grid4d(N, L=1.0):
    """Return 4D coordinate arrays X1..X4 each shape (N,N,N,N)."""
    xs = np.linspace(-L/2, L/2, N, endpoint=False)
    X = np.meshgrid(xs, xs, xs, xs, indexing='ij')
    return X  # tuple of 4 arrays

def gaussian(r2, sigma):
    return np.exp(-0.5 * r2 / (sigma**2))

# ---------- Divergence-free projection (spectral) ----------
def helmholtz_project_4d(u):
    """
    u: tuple/list of 4 arrays (u1,u2,u3,u4) each shape (N,N,N,N)
    returns divergence-free projection u_perp in spectral domain (periodic)
    """
    # Stack components
    u_comp = np.stack(u, axis=0)  # shape (4, N, N, N, N)
    shape = u_comp.shape[1:]
    # FFT each component
    u_hat = fftn(u_comp, axes=(1,2,3,4))
    # build k-vector arrays
    N = shape[0]
    L = float(N)  # assume unit grid spacing; adjust if dx != 1/N
    k1 = fftfreq(N, d=1.0/N) * 2*np.pi
    k = np.meshgrid(k1, k1, k1, k1, indexing='ij')
    k_vec = np.stack(k, axis=0)  # shape (4,N,N,N,N)
    ksq = np.sum(np.abs(k_vec)**2, axis=0)
    # avoid divide by zero at k=0
    ksq[ksq==0] = 1.0
    # projection: u_perp_hat = u_hat - k (k·u_hat)/|k|^2
    k_dot_u_hat = np.sum(k_vec * u_hat, axis=0)  # shape (N,N,N,N)
    correction = (k_vec * k_dot_u_hat / ksq)  # broadcasts to (4,N,N,N,N)
    u_perp_hat = u_hat - correction
    # inverse FFT
    u_perp = ifftn(u_perp_hat, axes=(1,2,3,4)).real
    return [u_perp[i] for i in range(4)]

# ---------- Analytic building blocks ----------



def toroidal_vortex_4d(X, center, R_major, r_minor, axis_plane=(0,1), sigma=0.1, 
amplitude=1.0):
    """
    Construct a smooth toroidal vorticity/velocity 'seed' in 4D.
    axis_plane: which pair of coordinate indices define the torus rotation plane 
(0..3).
    Returns a 4-vector velocity field (u1,u2,u3,u4) on grid X.
    Simple ansatz: define distance to torus centerline in the perpendicular 
subspace, then create swirl.
    """
    x1,x2,x3,x4 = X
    cx,cy,cz,cw = center
    # rotate coordinates so axis_plane is (a,b) and perpendicular coords are (c,d)
    coords = [x1-cx, x2-cy, x3-cz, x4-cw]
    a,b = axis_plane
    perp = [i for i in range(4) if i not in (a,b)]
    # radius in axis plane relative to center
    Rplane = np.sqrt(coords[a]**2 + coords[b]**2)
    # position relative to centerline of torus (distance to ring)
    dist_to_ring = np.sqrt((Rplane - R_major)**2 + coords[perp[0]]**2 + 
coords[perp[1]]**2)
    # generate scalar swirl magnitude
    swirl = amplitude * gaussian(dist_to_ring**2, sigma)
    # build a tangential unit vector around the ring (in a-b plane)
    # t = (-y, x)/Rplane  (handle Rplane~0)
    eps = 1e-12
    ux = np.zeros_like(x1)
    uy = np.zeros_like(x1)
    if True:
        t_a = -coords[b] / (Rplane + eps)
        t_b =  coords[a] / (Rplane + eps)
        # assign tangential component to the axis plane coords scaled by swirl
        comp = [np.zeros_like(x1) for _ in range(4)]
        comp[a] = swirl * t_a
        comp[b] = swirl * t_b
        # add small poloidal circulation around local ring cross-section (perp 
coords)
        # poloidal direction vector (perp[0], perp[1]) rotates around local normal
        pol_t = -coords[perp[1]] / (np.sqrt(coords[perp[0]]**2 + 
coords[perp[1]]**2)+eps)
        pol_u = coords[perp[0]] / (np.sqrt(coords[perp[0]]**2 + 
coords[perp[1]]**2)+eps)
        comp[perp[0]] = 0.3 * swirl * pol_t
        comp[perp[1]] = 0.3 * swirl * pol_u
        return comp  # list of 4 arrays
    # fallback (never reached)
    return [ux,uy,ux,uy]

def three_lobe_connected_4d(X, centers, R_major=0.3, r_minor=0.08):
    """
    Build three torus lobes arranged around a circle in some subspace and connected 
by bridges.
    centers: list of 3 centers in 4D (tuples)
    We'll sum three toroidal seeds, then add small Gaussian bridges between lobes.
    """
    u_acc = [np.zeros_like(X[0]) for _ in range(4)]
    for c in centers:
        u_l = toroidal_vortex_4d(X, center=c, R_major=R_major, r_minor=r_minor, 
axis_plane=(0,1), sigma=r_minor*0.8, amplitude=1.0)



        for i in range(4):
            u_acc[i] += u_l[i]
    # add bridges: simple gaussian vector fields directed along short lines 
connecting centers
    for i in range(3):
        j = (i+1) % 3
        c1 = centers[i]
        c2 = centers[j]
        # midpoint and direction
        mid = tuple(0.5*(np.array(c1)+np.array(c2)))
        dir_vec = np.array(c2) - np.array(c1)
        # create small Gaussian along mid with vector field pointing along dir_vec 
(normalized)
        X1,X2,X3,X4 = X
        r2 = (X1-mid[0])**2 + (X2-mid[1])**2 + (X3-mid[2])**2 + (X4-mid[3])**2
        bridge_strength = 0.4 * np.exp(-0.5 * r2 / ( (r_minor*1.2)**2 ))
        for k in range(4):
            u_acc[k] += bridge_strength * (dir_vec[k] / (np.linalg.norm(dir_vec)
+1e-12))
    return u_acc

# ---------- Example wrapper ----------
def build_electron_like(N=48, L=1.0):
    X = grid4d(N, L=L)
    # single-lobe centered at origin, major radius small so intersection is single-
lobe
    center = (0.0, 0.0, 0.0, 0.0)
    u_raw = toroidal_vortex_4d(X, center=center, R_major=0.05, r_minor=0.02, 
axis_plane=(0,1), sigma=0.02, amplitude=1.0)
    # project to divergence-free
    u_divfree = helmholtz_project_4d(u_raw)
    return u_divfree, X

def build_proton_like(N=48, L=1.0):
    X = grid4d(N, L=L)
    # place three centers on a ring in (x1,x2) with small offsets in x3,x4
    angle = 0.0
    R_center = 0.12
    centers = []
    for k in range(3):
        ang = 2*np.pi*k/3.0 + 0.2
        centers.append( (R_center*np.cos(ang), R_center*np.sin(ang), 
0.02*np.cos(2*ang), 0.02*np.sin(2*ang)) )
    u_raw = three_lobe_connected_4d(X, centers, R_major=0.05, r_minor=0.03)
    u_divfree = helmholtz_project_4d(u_raw)
    return u_divfree, X

# ---------- Save or convert to solver format ----------
if __name__ == "__main__":
    Nx = 32
    u_e, X = build_electron_like(N=Nx)
    u_p, Xp = build_proton_like(N=Nx)
    # Example: convert to single array shape (4,N,N,N,N) and save to disk (np.save) 
or HDF5 for solver ingestion
    u_e_array = np.stack(u_e, axis=0)
    u_p_array = np.stack(u_p, axis=0)
    np.save("electron_init.npy", u_e_array)
    np.save("proton_init.npy", u_p_array)
    print("Saved initial condition files.")



Implementation tips for the code above

 The toroidal_vortex_4d function is intentionally simple — it constructs a smooth 

toroidal swirl by localizing tangential flow near a 4D ring. You will tune R_major, r_minor, 

sigma, and amplitude to explore laminar vs turbulent regimes.

 The Helmholtz projection assumes periodic BCs. If your solver uses no-slip or different BCs, 
replace projection with a Poisson solve consistent with boundary conditions (i.e., subtract 
gradient of scalar potential).

 To reduce memory, create arrays of type np.float32. For production HPC, implement the 

same analytic formula on distributed arrays and project with parallel FFT (P3DFFT / FFTW + 
MPI).

2) Minimal mathematical note — governing equations, vorticity, 
diagnostics
A. Governing PDEs (4 spatial dimensions)

Compressible 4-D Navier–Stokes (conservative form)
Let spatial coordinates be xix^i with i=1..4i=1..4, time tt. Fields: mass density ρ(x,t)\rho(x,t), velocity 
u=(u1,…,u4)\mathbf{u} = (u^1,\dots,u^4), pressure pp, viscous stress τij\tau^{ij}.

∂tρ+∂i(ρui)=0,∂t(ρuj)+∂i(ρuiuj)=−∂jp+∂iτij+Fj,τij=μ(∂iuj+∂jui)+λ δij (∂kuk),\begin{aligned} \partial_t 
\rho + \partial_i(\rho u^i) &= 0, \\ \partial_t(\rho u^j) + \partial_i(\rho u^i u^j) &= -\partial^j p + 
\partial_i \tau^{ij} + F^j, \\ \tau^{ij} &= \mu\left(\partial^i u^j + \partial^j u^i\right) + \lambda\,
\delta^{ij}\,(\partial_k u^k), \end{aligned} 

where repeated indices sum i=1..4i=1..4. Choose Newtonian constants μ\mu (shear viscosity) and 
λ\lambda (bulk viscosity). Equation of state: start with isothermal p=cs2ρp = c_s^2 \rho or ideal gas 
p=ρRTp = \rho R T.

Incompressible limit (first tests):

∂iui=0,∂tuj+ui∂iuj=−∂jp+νΔ4uj+fj,\partial_i u^i = 0, \qquad \partial_t u^j + u^i\partial_i u^j = -
\partial^j p + \nu \Delta_4 u^j + f^j, 

with ν=μ/ρ\nu=\mu/\rho, and Δ4\Delta_4 Laplacian in 4D.

B. Vorticity in 4D — the antisymmetric 2-form / tensor

In nn-dimensional space the vorticity is a 2-form ω=12ωij dxi dxj\omega = \tfrac12 \omega_{ij}∧
\,dx^i\wedge dx^j. Components:

ωij=∂iuj−∂jui,i,j {1,…,4}.\omega_{ij} = \partial_i u_j - \partial_j u_i,\qquad i,j\in\{1,\dots,4\}.∈  



There are (42)=6 \binom{4}{2} = 6 independent components: 
ω12,ω13,ω14,ω23,ω24,ω34\omega_{12},\omega_{13},\omega_{14},\omega_{23},\omega_{24},
\omega_{34}.

Vorticity evolution (from curl of momentum eqn):

∂tωij+uk∂kωij=ωik∂juk−ωjk∂iuk+νΔ4ωij+(∂ifj−∂jfi).\partial_t \omega_{ij} + u^k\partial_k 
\omega_{ij} = \omega_{ik}\partial_j u^k - \omega_{jk}\partial_i u^k + \nu \Delta_4 \omega_{ij} + 
(\partial_i f_j - \partial_j f_i). 

This is the natural extension of vorticity transport to 4D (advection + vortex stretching terms 
generalized).

C. Generalized circulation and topological diagnostics

 Classical (3D) circulation Γ around closed loop C is Γ= Cu dr\Gamma = \oint_C \mathbf{u}∮ ⋅
\cdot d\mathbf{r}. Stokes relates it to surface integral of vorticity 2-form over surface S with 

boundary ∂S=C.

 In 4D: vorticity is already a 2-form. Integration of ω\omega over a chosen oriented 2-surface 
Σ2\Sigma^2 (embedded in 4D) gives a scalar circulation content:

Γ(Σ)= Σ12ωij dSij.\Gamma(\Sigma) = \iint_{\Sigma} \frac{1}{2}\omega_{ij}\,dS^{ij}.∬  

Here dSijdS^{ij} is an oriented area element in the i ⁣− ⁣ji\!-\!j coordinate plane of the surface patch. By 
generalized Stokes, the integral of ω\omega over a 2-surface equals the integral of uu over its 1-
dimensional boundary (if boundary exists).

Discrete diagnostic: pick coordinate 2-planes (e.g., x1 ⁣− ⁣x2x^1\!-\!x^2 plane or curved 2-surface built 
in 4D) and compute:

Γ12(S)≈∑cells Sω12(x) ΔS.\Gamma_{12}(S) \approx \sum_{cells\in S} \omega_{12}(x)\, \Delta S.∈  

Compare Γ across surfaces that thread the vortex core to detect quantized/robust circulation.

D. Observables / proxies mapped from CFD fields

Cobb’s model needs mappings from pandemonium flow to classical observables (charge, magnetic 
moment, form factor). Below are pragmatic proxies:

1. Vorticity norm (local intensity)

ω (x)=12∑i<jωij2.|\omega|(x) = \sqrt{\tfrac12 \sum_{i<j} \omega_{ij}^2 }.∣ ∣  

Useful to locate vortex cores (maxima) and void centers (low density region encircled by high 
vorticity).

2. Charge proxy ρq(x)\rho_q(x) — choose a physically-motivated mapping (must be declared):



One possible choice (works as a starting point):

ρq(x)=α ∂i(Pi)withPi=ϵijkℓ uj ωkℓ.\rho_q(x) = \alpha\, \partial_i ( P^{i} ) \quad\text{with}\quad P^{i} 
= \epsilon^{i j k \ell} \, u_j \, \omega_{k\ell}. 

 Here ϵijkl\epsilon^{ijkl} is the 4D Levi-Civita tensor.

 P^i is a pseudovector built from flow and vorticity; divergence of it gives a scalar 

charge proxy.

 Calibrate α\alpha such that integrated ∫ρq d3x\int \rho_q \,d^3x over a 3-slice equals ±1 
for basic vortex.

Simpler alternative: pick component of u along a primary spin axis and use divergence of that 

component.

3. Magnetic moment proxy μ (3D slice view): pick a 3-slice (our observed 3-space). With ρ_q 

and 3-space velocity v( r ) (projection of u into slice), define:

μ=∫V3r×(ρqv) d3r.\boldsymbol{\mu} = \int_{V_{3}} \mathbf{r}\times (\rho_q \mathbf{v})\, d^3r. 

Calculate sign and magnitude vs parameters. Use this as proxy for magnetic dipole.

4. Form factor / scattering proxy
On a chosen 3-slice, compute:

F(q)=∫V3ρq(r) e−iq r d3r.F(\mathbf{q}) = \int_{V_3} \rho_q(\mathbf{r})\, e^{-i\mathbf{q}\cdot ⋅
\mathbf{r}}\, d^3r. 

Compare low-q (coherent) and high-q (substructure) behavior. Use radial average for simpler 

diagnostics.

5. Void/ core detection & lobe counting

 Compute pressure or a "density proxy" (e.g., p = c_s^2 rho). Or use |ω| contour 

to detect surrounding ring and low-pressure interior.

 For each 3-slice x4=constx_4 = const identify connected components of low-density 
cores (e.g., density < threshold). Count components as lobes. Sweep x_4 to see 

how many intersections appear — that gives number of 3-lobes.

E. Discrete numerical formulas (what to implement)

 Vorticity components: discrete derivatives via spectral or central differences:

ωij(x)≈∂iuj−∂jui\omega_{ij}(\mathbf{x}) \approx \partial_i u_j - \partial_j u_i 

Use spectral differentiation (multiply u_hat by i k_i) for accuracy and to avoid numerical noise.

 Circulation integral over 2D grid patch S in plane (i,j):

Γij≈∑cells Sωij(x) ΔS\Gamma_{ij} \approx \sum_{cells\in S} \omega_{ij}(\mathbf{x}) \,\Delta S∈  



(ΔS is the 2D area of each surface patch).

 Helmholtz projection (spectral):

u^ (k)=u^(k)−k(k u^(k)) k 2,\hat{\mathbf{u}}_\perp(\mathbf{k}) = \hat{\mathbf{u}}(\mathbf{k}) - ⊥ ⋅ ∣ ∣
\frac{\mathbf{k}(\mathbf{k}\cdot\hat{\mathbf{u}}(\mathbf{k}))}{|\mathbf{k}|^2}, 

and inverse FFT to get u_perp(x).

F. Practical parameter mapping & calibration

 Non-dimensionalization: choose characteristic length L0L_0 and velocity U0U_0. Let 
R_major ~ few × grid spacing in nondim units. Map to physical units after you match one 

empirical datum (e.g., set proton mass proxy via total kinetic energy constant).

 Dimensionless numbers: Reynolds Re=U0L0/νRe = U_0 L_0 / \nu, R_* (vortex Reynolds) = 
Γ/ν\Gamma/\nu. Sweep Re from laminar to transitional: e.g., Re  [10^1,10^4] in nondim units.∈

 Mapping energy → MeV: pick one anchor: e.g., choose parameter set for proton-like vortex 
such that its total flow energy equals mpc2m_p c^2. That gives scale factors for comparing 
energetics qualitatively.

Practical final notes + checklist to implement
 Start simple: incompressible 4D Navier–Stokes, small grids (32³×32), spectral projection; find 

steady vortex attractors. If found, port to compressible solver and increase resolution.

 Diagnostics to always output: vorticity component maps, vorticity norm, 3-slice isosurfaces, 
circulation integrals on several 2-surfaces, rho_q slices, form factor F(q) radial shells, time 

series of total kinetic energy, vortex core positions and topological counts.

 Stability tests: add white-noise perturbation (1–5% amplitude) and check recovery; apply 
stretching perturbation between lobe centers and compute energy vs separation.

 Reproducibility: script the full experiment with random seeds, parameter sweeps, and data-
saving (HDF5 with metadata). Keep scripts to compute diagnostics from saved snapshots so 
you can rerun analyses cheaply.

If you want next:

 I can convert the initial-condition templates above into an MPI-enabled example 
(pseudocode) that uses mpi4py + pyfftw parallel FFTs — useful if you'll run medium-sized 

64^4 tests on a cluster.



 Or I can draft the exact set of diagnostics routines (Python functions) for computing 
omega_ij, circulation integrals on arbitrary 2-surfaces, 3-slice lobe counting and form-factor 

computation, ready to plug into your postprocessing pipeline.

Which of those should I prepare next?

========

My prompt to GPT-5:

I would like both.

Its response:

Nice — below are both deliverables you asked for, ready to drop into an HPC workflow.

1. MPI-enabled initial-condition generator (pseudocode / runnable-style) using mpi4py + 

mpi4py_fft/pyfftw patterns (two fallbacks included: a recommended-parallel path using 

mpi4py_fft if available, and a simpler single-node pyfftw fallback). This produces 

divergence-free 4-D velocity fields and writes HDF5 output in a chunked, MPI-friendly way.

2. Diagnostics/postprocessing library — a set of Python functions you can import and run on 
saved snapshot arrays (per-process chunks). Each routine handles local computation and 
includes MPI reduction steps so the full-domain diagnostics are returned to rank 0 for 
plotting/analysis:

 compute_vorticity_4d

 compute_vorticity_norm

 compute_circulation_on_patch (arbitrary 2-surface patch in a grid-aligned 

plane)

 count_3slice_lobes (connected-component labelling of low-density cores in 3-

slices)

 compute_form_factor (FFT-based form factor on chosen 3-slice)

Important notes before you run:



 True production 4-D spectral transforms and 4-D distributed arrays are nontrivial. 
The code below uses common HPC building blocks and is intentionally explicit 
about when you’ll need a specialized library (e.g., mpi4py_fft or pfft). If those 
aren’t available you can run small proof-of-concept tests single-node with pyfftw 
or NumPy FFT.

 The code assumes a uniform Cartesian grid with periodic BCs. If your CFD uses 
other BCs, adapt the projection step accordingly (Poisson solve for pressure).

 I provide explicit MPI reductions (sums, maxima) so the routines can be used in an 
MPI job without rewriting.

A — MPI-enabled initial-condition generator (template)
# init4d_mpi.py
# MPI-aware initial-condition builder for 4D periodic grids.
# Produces divergence-free 4D velocity arrays and saves in HDF5 (chunked).
#
# Requires: mpi4py, h5py (MPI build), numpy
# Optional (recommended): mpi4py_fft (for distributed FFT), pyfftw (for local FFT 
acceler.)
#
# Run via: mpirun -n <P> python init4d_mpi.py --N 64 --out electron.h5

import argparse
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

# Optional imports
try:
    from mpi4py_fft import PFFT, newDistArray  # pip install mpi4py-fft
    HAVE_MPIFFT = True
except Exception:
    HAVE_MPIFFT = False

try:
    import pyfftw
    HAVE_PYFFTW = True
except Exception:
    HAVE_PYFFTW = False

# HDF5 writer will be done via h5py with MPI driver if available
try:
    import h5py
    H5_MPI = hasattr(h5py, "File") and hasattr(h5py, "Dataset")
except Exception:
    h5py = None
    H5_MPI = False

# ---------- Utilities: analytic "seeds" ----------
def grid_coords_local(N, L, slab_axis=0):



    """
    Domain decomposition: slab decomposition on axis 'slab_axis' (0..3)
    Returns local coordinate arrays X1..X4 (numpy arrays) for this rank.
    This simple slab splits the first axis x0 among ranks.
    """
    # global grid
    xs = np.linspace(-L/2, L/2, N, endpoint=False)
    counts = [N//size + (1 if i < (N % size) else 0) for i in range(size)]
    starts = [sum(counts[:r]) for r in range(size)]
    local_n0 = counts[rank]
    start = starts[rank]
    local_x0 = xs[start:start+local_n0]
    X = np.meshgrid(local_x0, xs, xs, xs, indexing='ij')  # local slab
    return X, start, local_n0

def gaussian(r2, sigma):
    return np.exp(-0.5 * r2 / (sigma**2))

def toroidal_vortex_4d_local(X, center, R_major, r_minor, axis_plane=(0,1), 
sigma=0.1, amplitude=1.0):
    x1,x2,x3,x4 = X
    cx,cy,cz,cw = center
    coords = [x1-cx, x2-cy, x3-cz, x4-cw]
    a,b = axis_plane
    perp = [i for i in range(4) if i not in (a,b)]
    Rplane = np.sqrt(coords[a]**2 + coords[b]**2)
    dist_to_ring = np.sqrt((Rplane - R_major)**2 + coords[perp[0]]**2 + 
coords[perp[1]]**2)
    swirl = amplitude * gaussian(dist_to_ring**2, sigma)
    # tangential
    eps = 1e-12
    t_a = -coords[b] / (Rplane + eps)
    t_b =  coords[a] / (Rplane + eps)
    comp = [np.zeros_like(x1) for _ in range(4)]
    comp[a] = swirl * t_a
    comp[b] = swirl * t_b
    # small poloidal
    norm_perp = np.sqrt(coords[perp[0]]**2 + coords[perp[1]]**2) + eps
    comp[perp[0]] = 0.25 * swirl * (-coords[perp[1]]/norm_perp)
    comp[perp[1]] = 0.25 * swirl * (coords[perp[0]]/norm_perp)
    return comp

# ---------- Divergence-free projection (distributed) ----------
def helmholtz_project_distributed(u_local, N, L, axis0_local_n, axis0_start):
    """
    u_local: list of 4 local arrays shaped (n0_local, N, N, N)
    If mpi4py_fft available, use its PFFT to compute global projection efficiently.
    Fallback: gather to rank0, do global FFT, project, broadcast (only for small 
N).
    """
    if HAVE_MPIFFT:
        # Use slab distribution consistent with PFFT's dist -- here we do a 4D 
transform
        # NOTE: mpi4py_fft requires careful dist setup; we present a recommended 
pattern
        axes = (0,1,2,3)
        # create PFFT with same global shape and same slab decomposition along 
axis=0
        pfft = PFFT(comm, shape=(N,N,N,N), axes=axes, dtype='complex128')



        # allocate distributed arrays
        u_hat = [pfft.create_input_array() for _ in range(4)]
        # copy local real-space u into the PFFT input arrays (they handle local 
layout)
        for i in range(4):
            u_hat[i][...] = u_local[i]
        # forward FFT
        for i in range(4):
            pfft.forward(u_hat[i], u_hat[i])  # in-place pattern (depends on API)
        # compute k vectors on local spectral distribution
        kvec = pfft.get_kvec()  # pseudocode: actual API differs; consult docs
        ksq = np.sum(kvec**2, axis=0)
        ksq[ksq==0] = 1.0
        # compute k·u_hat locally and projection
        # u_perp_hat = u_hat - k*(k·u_hat)/|k|^2
        # note: shape and broadcasting must match; this is pseudocode
        k_dot_u = None  # compute via sum(kvec * u_hat components)
        # inverse transform to get u_perp in real space
        for i in range(4):
            pfft.backward(u_hat[i], u_hat[i])
        # return real parts local arrays
        u_perp_local = [arr.real.copy() for arr in u_hat]
        return u_perp_local
    else:
        # fallback: gather to rank0 (only for small N)
        if rank == 0:
            full = np.zeros((4, N, N, N, N), dtype='float64')
            # place rank0's slab
            local_n0 = axis0_local_n
            full[:, axis0_start:axis0_start+local_n0, :, :, :] = np.stack(u_local, 
axis=0)
            # receive others
            for r in range(1, size):
                cnt = comm.recv(source=r, tag=10+r)
                slab = np.empty((4, cnt, N, N, N), dtype='float64')
                comm.Recv(slab, source=r, tag=100+r)
                start_r = sum([N//size + (1 if i < (N % size) else 0) for i in 
range(r)])
                full[:, start_r:start_r+cnt, :, :, :] = slab
            # global FFT & projection (numpy fftn)
            full_hat = np.fft.fftn(full, axes=(1,2,3,4))
            # build k vectors (global)
            k1 = np.fft.fftfreq(N, d=1.0/N) * 2*np.pi
            k = np.meshgrid(k1,k1,k1,k1, indexing='ij')
            kvec = np.stack(k, axis=0)
            ksq = np.sum(kvec**2, axis=0)
            ksq[ksq==0] = 1.0
            # project each spectral component
            u_perp_hat = full_hat - (kvec * np.sum(kvec*full_hat, axis=0)[None,...] 
/ ksq[None,...])
            # inverse FFT
            u_perp = np.fft.ifftn(u_perp_hat, axes=(1,2,3,4)).real
            # send slabs back to ranks
            for r in range(1,size):
                cnt = [N//size + (1 if i < (N % size) else 0) for i in range(size)]
[r]
                start_r = sum([N//size + (1 if i < (N % size) else 0) for i in 
range(r)])
                slab = u_perp[:, start_r:start_r+cnt, :, :, :].copy()



                comm.send(cnt, dest=r, tag=10+r)
                comm.Send(slab, dest=r, tag=100+r)
            # pack local slab for rank0
            local_out = [u_perp[i, axis0_start:axis0_start+axis0_local_n, :, :, :] 
for i in range(4)]
            return local_out
        else:
            # non-root: send local data to root
            local_stack = np.stack(u_local, axis=0).astype('float64')
            comm.send(axis0_local_n, dest=0, tag=10+rank)
            comm.Send(local_stack, dest=0, tag=100+rank)
            # wait for root to return projected slab
            cnt = comm.recv(source=0, tag=10+rank)
            slab = np.empty((4, cnt, N, N, N), dtype='float64')
            comm.Recv(slab, source=0, tag=100+rank)
            return [slab[i] for i in range(4)]

# ---------- HDF5 writer ----------
def write_hdf5_parallel(fname, dataset_name, local_array, global_shape, 
axis0_start):
    """
    local_array shape (4, local_n0, N, N, N)
    Writes as dataset [4, N, N, N, N] with axis 1 distributed (slab).
    Uses h5py MPI driver if available; otherwise rank0 gathers and writes (small 
runs).
    """
    if H5_MPI and h5py.get_config().mpi:
        with h5py.File(fname, 'w', driver='mpio', comm=comm) as f:
            dset = f.create_dataset(dataset_name, shape=global_shape, dtype='f8')
            # hyperslab write
            start = (0, axis0_start, 0, 0, 0)
            count = (4, local_array.shape[1], global_shape[2], global_shape[3], 
global_shape[4])
            dset[start[0]:start[0]+count[0], start[1]:start[1]+count[1], :, :, :] = 
local_array
    else:
        # fallback: gather to rank0 (only for small N)
        if rank == 0:
            full = np.empty(global_shape, dtype='float64')
            full[:, axis0_start:axis0_start+local_array.shape[1], :, :, :] = 
local_array
            # receive other slabs
            for r in range(1, size):
                cnt = comm.recv(source=r, tag=200+r)
                slab = np.empty((4, cnt, global_shape[2], global_shape[3], 
global_shape[4]), dtype='float64')
                comm.Recv(slab, source=r, tag=300+r)
                start_r = sum([global_shape[1]//size + (1 if i < (global_shape[1] % 
size) else 0) for i in range(r)])
                full[:, start_r:start_r+cnt, :, :, :] = slab
            # write with local h5py
            import h5py
            with h5py.File(fname, 'w') as f:
                f.create_dataset(dataset_name, data=full, compression='gzip')
            print("Wrote", fname)
        else:
            # send slab to root
            comm.send(local_array.shape[1], dest=0, tag=200+rank)
            comm.Send(local_array, dest=0, tag=300+rank)



# ---------- Main driver ----------
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--N", type=int, default=48, help="global grid size per 
axis (N^4)")
    parser.add_argument("--L", type=float, default=1.0)
    parser.add_argument("--out", type=str, default="init4d.h5")
    parser.add_argument("--type", type=str, default="electron", 
choices=("electron","proton"))
    args = parser.parse_args()

    N = args.N
    L = args.L
    X, start, local_n0 = grid_coords_local(N, L, slab_axis=0)
    # choose analytic seed
    if args.type == "electron":
        u_raw = toroidal_vortex_4d_local(X, center=(0,0,0,0), R_major=0.05, 
r_minor=0.02, axis_plane=(0,1), sigma=0.02, amplitude=1.0)
    else:
        # proton-like: three lobes placed around ring
        angles = [0, 2*np.pi/3, 4*np.pi/3]
        centers = [(0.12*np.cos(a), 0.12*np.sin(a), 0.02*np.cos(2*a), 
0.02*np.sin(2*a)) for a in angles]
        # sum their contributions locally
        uacc = [np.zeros_like(X[0]) for _ in range(4)]
        for c in centers:
            cseed = toroidal_vortex_4d_local(X, center=c, R_major=0.05, 
r_minor=0.03, axis_plane=(0,1), sigma=0.03, amplitude=1.0)
            for i in range(4):
                uacc[i] += cseed[i]
        u_raw = uacc

    # Project to be divergence-free
    u_proj = helmholtz_project_distributed(u_raw, N=N, L=L, axis0_local_n=local_n0, 
axis0_start=start)

    # pack into shape (4, local_n0, N, N, N)
    local_stack = np.stack(u_proj, axis=0)

    # write HDF5
    global_shape = (4, N, N, N, N)
    write_hdf5_parallel(args.out, "u", local_stack, global_shape, 
axis0_start=start)

    if rank == 0:
        print("Initial condition generation complete.")

if __name__ == "__main__":
    main()

How to use / adapt

 If you have mpi4py_fft, adapt the helmholtz_project_distributed block to that 

API — it will be orders of magnitude faster and memory-efficient for large N across many 

ranks. I left a pseudocode placeholder; consult mpi4py_fft docs for exact function names.



 For small-scale validation (N<=48) on a single node, run with mpirun -n 1 and the fallback 

gather-based projection will work.

 Output HDF5 file format: dataset "u" with shape (4, N, N, N, N) where axis 1 is the x0 

axis distributed in slabs.

B — Diagnostics / postprocessing routines (Python module)
Save as diagnostics4d.py. These functions expect local slab arrays (rank-local portions) shaped 

(4, n0, N, N, N) or 3D arrays for slice-based routines. They perform MPI reductions and return 

aggregated results on rank 0.

# diagnostics4d.py
import numpy as np
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

def compute_vorticity_4d(u_local, dx=1.0):
    """
    Compute 6-component vorticity tensor fields locally.
    u_local shape: (4, n0, N, N, N)
    Returns dict of omega_ij arrays with same local slab shape (n0,N,N,N)
    """
    # Finite-difference central derivatives in each axis using numpy roll 
(periodic).
    # Assumes uniform grid spacing dx and full global periodicity (works on local 
slabs if ghost cells present).
    comps = {}
    # local arrays
    u0,u1,u2,u3 = u_local
    # helper derivative using spectral or central differences; here central 
difference (needs ghost cells)
    def deriv(arr, axis):
        return (np.roll(arr, -1, axis=axis) - np.roll(arr, 1, axis=axis)) / (2*dx)
    # index mapping for axes in local arrays: 0->local n0 axis, 1->x1,2->x2,3->x3
    # compute omega_01 = d0 u1 - d1 u0  etc.
    omega = {}
    omega['01'] = deriv(u0, 0) * 0.0 + deriv(u1, 0) - deriv(u0, 1)  # careful 
ordering (example)
    # Better: compute all with loop
    U = [u0, u1, u2, u3]
    for i in range(4):
        for j in range(i+1, 4):
            key = f"{i}{j}"
            di_uj = deriv(U[j], i)
            dj_ui = deriv(U[i], j)
            omega[key] = di_uj - dj_ui
    return omega  # dict of six arrays

def compute_vorticity_norm(omega_dict):
    # pointwise sqrt(1/2 sum omega_ij^2)
    s = None
    for key, arr in omega_dict.items():



        if s is None:
            s = 0.5 * (arr**2)
        else:
            s += 0.5 * (arr**2)
    norm = np.sqrt(s)
    return norm

def compute_circulation_on_patch(omega_dict, plane=(0,1), slab_indices=None, 
dx=1.0):
    """
    Integrate omega_{ij} over a grid-aligned 2-surface patch in plane (i,j).
    slab_indices: tuple specifying index ranges for local slab in axes (i,j), e.g. 
slices
    We assume the 2-surface is axis-aligned and described by fixing the other two 
coordinates.
    Returns global scalar Gamma (reduced to rank 0).
    """
    i,j = plane
    key = f"{i}{j}" if i<j else f"{j}{i}"
    arr = omega_dict[key]  # local slab values
    # choose integration region: full local slab or provided
    if slab_indices is None:
        local_sum = np.sum(arr) * (dx*dx)
    else:
        sl = arr[slab_indices]
        local_sum = np.sum(sl) * (dx*dx)
    total = comm.allreduce(local_sum, op=MPI.SUM)
    if rank == 0:
        return total
    return None

# -------- 3-slice lobes counting (connected components) ----------
def count_3slice_lobes(rho_local, axis0_start, threshold, slice_x4_index=None):
    """
    rho_local: local slab of scalar 'density' or 'rho_q' with shape (n0, N, N, N)
    axis0_start: global start index of this slab along axis0.
    threshold: scalar threshold to define 'low-density core' (e.g. density < 
threshold)
    slice_x4_index: optional integer global index for x4 slice to analyze (if None 
use middle)
    Returns (global_lobe_counts_per_slice dict) on rank 0.
    """
    n0 = rho_local.shape[0]
    N = rho_local.shape[1]
    # determine which local index (if any) corresponds to requested slice
    if slice_x4_index is None:
        # choose central global slice
        # compute global mid index
        global_mid = N//2
        slice_idx = global_mid
    else:
        slice_idx = slice_x4_index
    # check if slice is in this slab
    local_idx = slice_idx - axis0_start
    local_counts = {}
    if 0 <= local_idx < n0:
        # extract 3D array of shape (N,N,N) for that slice
        arr3 = rho_local[local_idx]
        mask = arr3 < threshold



        # connected-component labelling in 3D (simple BFS/stack)
        # Implement simple stack-based labelling (inefficient but fine for moderate 
N)
        visited = np.zeros_like(mask, dtype=bool)
        counts = 0
        from collections import deque
        for i in range(N):
            for j in range(N):
                for k in range(N):
                    if mask[i,j,k] and not visited[i,j,k]:
                        # flood fill
                        counts += 1
                        dq = deque([(i,j,k)])
                        visited[i,j,k] = True
                        while dq:
                            a,b,c = dq.popleft()
                            # 6-neighborhood
                            for da,db,dc in ((1,0,0),(-1,0,0),(0,1,0),(0,-1,0),
(0,0,1),(0,0,-1)):
                                aa = (a+da) % N
                                bb = (b+db) % N
                                cc = (c+dc) % N
                                if mask[aa,bb,cc] and not visited[aa,bb,cc]:
                                    visited[aa,bb,cc] = True
                                    dq.append((aa,bb,cc))
        local_counts = counts
    else:
        local_counts = 0
    # reduce to global sum (only rank with slice contributes)
    total_counts = comm.allreduce(local_counts, op=MPI.SUM)
    if rank == 0:
        return total_counts
    return None

# -------- form factor computation on 3-slice ----------
def compute_form_factor(rho_local, axis0_start, qvecs=None):
    """
    rho_local: (n0, N, N, N) local scalar on slab
    axis0_start: global start index of slab
    qvecs: list of q vectors (3-tuples) in units of grid k-space; if None compute 
radial shell power
    Returns dict on rank 0: radial F(q) or specific q values
    """
    # Gather the chosen 3-slice (middle) to rank0, or compute distributed FFT if 
available
    global_N = rho_local.shape[1]
    target_slice = global_N // 2
    local_idx = target_slice - axis0_start
    if 0 <= local_idx < rho_local.shape[0]:
        # we have the slice
        slice3 = rho_local[local_idx]
    else:
        # create empty slice locally
        slice3 = np.zeros((global_N, global_N, global_N))
    # gather slices to rank0
    full_slice = None
    slices = comm.gather(slice3, root=0)
    if rank == 0:



        # stitch by order of ranks (we used slab on axis0; only one rank contains 
the slice)
        # find the nonzero slice
        for s in slices:
            if np.any(s):
                full_slice = s.copy()
                break
        # compute FFT and radial shells
        Fk = np.fft.fftn(full_slice)
        Pk = np.abs(Fk)**2
        # radial average
        k1 = np.fft.fftfreq(global_N, d=1.0/global_N)
        kx,ky,kz = np.meshgrid(k1,k1,k1, indexing='ij')
        kr = np.sqrt(kx**2 + ky**2 + kz**2)
        kr_flat = kr.ravel()
        P_flat = Pk.ravel()
        nbins = min(50, global_N//2)
        bins = np.linspace(0, kr_flat.max(), nbins+1)
        inds = np.digitize(kr_flat, bins)
        radial = np.array([P_flat[inds==i].mean() if np.any(inds==i) else 0.0 for i 
in range(1,nbins+1)])
        return {'radial_bins': bins[1:], 'radial_power': radial}
    else:
        return None

# ---------- helper to compute charge-proxy rho_q ----------
def compute_charge_proxy(u_local, omega_dict_local, alpha=1.0):
    """
    One pragmatic proxy: build P^i = eps^{ijkl} u_j omega_{kl} and take divergence 
-> scalar.
    Return rho_q_local shape (n0,N,N,N)
    """
    # build eps tensor operations manually: eps^{ijkl} contraction
    # For 4D Levi-Civita, we'll compute P component by direct expansion (6 terms)
    u0,u1,u2,u3 = u_local
    w = omega_dict_local  # keys '01','02','03','12','13','23' etc (note mapping)
    # safe mapping
    # Build P0 = eps^{0jkl} u_j omega_{kl} = + (u1*w23 - u2*w13 + u3*w12)  (up to 
sign conventions)
    P0 = u1 * w['23'] - u2 * w['13'] + u3 * w['12']
    P1 = -u0 * w['23'] + u2 * w['03'] - u3 * w['02']
    P2 = u0 * w['13'] - u1 * w['03'] + u3 * w['01']
    P3 = -u0 * w['12'] + u1 * w['02'] - u2 * w['01']
    # divergence of P: approximate with central differences; here we do simple 
spectral-like central differences using roll
    def deriv(arr, axis, dx=1.0):
        return (np.roll(arr, -1, axis=axis) - np.roll(arr, 1, axis=axis)) / (2*dx)
    div = deriv(P0, 0) + deriv(P1, 1) + deriv(P2, 2) + deriv(P3, 3)
    rho_q_local = alpha * div
    return rho_q_local

# Example usage pattern (in your MPI job):
# - Load local slab u (4,n0,N,N,N) from the HDF5 snapshot.
# - omega = compute_vorticity_4d(u_local)
# - omega_norm = compute_vorticity_norm(omega)
# - gamma = compute_circulation_on_patch(omega, plane=(0,1))
# - rho_q = compute_charge_proxy(u_local, omega)
# - lobes = count_3slice_lobes(rho_q, axis0_start, threshold=some_value)
# - Fq = compute_form_factor(rho_q, axis0_start)



Quick implementation plan & tips
 Test locally first. Run init4d_mpi.py with -n 1 and N=24 to generate small HDF5 initial 

conditions. Use the diagnostic functions on that dataset to verify shapes and basic outputs.

 MPI FFT: Installing mpi4py_fft (which depends on an underlying FFT library and MPI) is 

recommended for large runs — it handles distributed transforms and data layout efficiently. If 
you prefer C/C++ backend, libraries like P3DFFT or PFFT are also options; the high-level 
pattern above remains the same.

 Ghost cells: The finite-difference derivatives in diagnostics4d.py assume periodic BCs 

and access to neighbor cells via np.roll. If your slab decomposition separates ranks (no 

ghost cells), either:

 use spectral derivative (global FFT) with a distributed FFT library, or

 exchange halo/ghost-face data between neighboring ranks before computing derivatives.

 I/O format: HDF5 with MPI driver is stable and widely used. Include metadata attributes (grid 
spacing, axis0_start, N, L) so diagnostics know the global geometry.

 Performance: For serious grid sizes (≥64^4), you will need multi-node runs and distributed 
FFTs — single-node memory will be insufficient. Use float32 for initial exploration, float64 for 
converged runs.

 Validation: Start by re-running Exp1 (single-lobe seed), track vorticity_norm and lobe counts 
as you vary viscosity. Use the radial form-factor to check "pointlike vs structured" behavior.

If you want, next I can:

 Produce a compact MPI halo-exchange snippet (for 4D slab decomposition) so you can 
compute derivatives locally without global FFTs, or

 Convert the diagnostics into numba-accelerated versions for faster local processing before 
MPI reductions.

Which would you like next?

========

My prompt to GPT-5:



I would like both.

Its response:

Nice — below are both pieces you asked for, ready to drop into your MPI+Python workflow.

1. 4-D MPI halo-exchange snippet (slab decomposition along axis 0) — minimal, robust pattern 
using mpi4py Sendrecv to populate one-cell ghost layers so local finite-difference 

derivatives can be computed without global FFTs.

2. Numba-accelerated diagnostics — two @njit routines (a) compute the six vorticity 

components and the vorticity norm for a local slab, and (b) compute the simple charge-proxy 
rho_q = α · div(P) where P^i = eps^{ijkl} u_j omega_{kl} as previously 

described. These are designed to operate on local slabs with ghost layers already present (so the 
caller must first call the halo exchange).

Both snippets are written to fit into the code you already have (same array shapes: u_local as (4, 
n0_local+2, N, N, N) where the +2 in axis0 includes one ghost cell at start and end). I include 

explanatory comments and usage notes.

A — 4-D MPI halo-exchange (slab decomposition on axis0)
This pattern assumes:

 Global grid size N (each axis length).

 Slab decomposition along axis 0 (the first spatial axis), i.e., each rank stores a contiguous block 
of n0_local interior cells, and we allocate 1 ghost cell at each end so our local array axis0 

length = n0_local + 2.

 Periodic boundary conditions (wrap-around exchange). If you want non-periodic, adapt 
sends/receives and ghost fill values accordingly.

# halo_exchange_4d.py
from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

def compute_counts_and_starts(N, size):
    base = N // size
    extra = N % size
    counts = [(base + (1 if r < extra else 0)) for r in range(size)]



    starts = [sum(counts[:r]) for r in range(size)]
    return counts, starts

def exchange_ghost_cells_axis0(u_local, N, counts, starts, axis0_start):
    """
    u_local: numpy array with shape (4, n0_local+2, N, N, N)
             where index 0..n0_local+1 includes ghosts at 0 and -1 positions.
    counts: list of interior counts per rank
    starts: list of starting global index for each rank (interior start)
    axis0_start: this rank's interior start index (global)
    Returns: u_local updated with ghost layers filled from neighbor ranks 
(periodic).
    """
    # neighbor ranks (periodic)
    prev_rank = (rank - 1) % size
    next_rank = (rank + 1) % size

    n0_local = counts[rank]
    # indices in local array for interior block: [1 : 1+n0_local)
    # ghost-left index: 0, ghost-right index: 1 + n0_local
    send_left = u_local[:, 1, :, :, :].copy()           # leftmost interior slice 
(to prev's right ghost)
    send_right = u_local[:, 1 + n0_local - 1, :, :, :].copy()  # rightmost interior 
slice (to next's left ghost)

    # Post non-blocking sends/recv or blocking Sendrecv for simplicity
    # Send my leftmost interior to prev's right ghost; receive prev's rightmost 
interior into my left ghost
    recv_left = np.empty_like(send_left)
    req1 = comm.Isend(send_left, dest=prev_rank, tag=11)
    req2 = comm.Irecv(recv_left, source=prev_rank, tag=12)
    # Send my rightmost interior to next's left ghost; receive next's leftmost 
interior into my right ghost
    recv_right = np.empty_like(send_right)
    req3 = comm.Isend(send_right, dest=next_rank, tag=12)
    req4 = comm.Irecv(recv_right, source=next_rank, tag=11)

    # Wait for transfers
    MPI.Request.Waitall([req1, req2, req3, req4])

    # place received slices into ghost locations
    u_local[:, 0, :, :, :] = recv_left        # left ghost
    u_local[:, 1 + n0_local, :, :, :] = recv_right   # right ghost

    # Done: local slab now has ghost cells available for central-difference ops
    return u_local

# ---------------- Example usage ----------------
# Suppose you previously created a local array u_local_interior shape (4, n0_local, 
N, N, N)
# Expand to have ghost layers:
# u_local = np.zeros((4, n0_local+2, N, N, N), dtype=u_local_interior.dtype)
# u_local[:, 1:1+n0_local, :, :, :] = u_local_interior
# axis0_start = starts[rank]  # computed from compute_counts_and_starts
# counts, starts = compute_counts_and_starts(N, size)
# u_local = exchange_ghost_cells_axis0(u_local, N, counts, starts, axis0_start)
# Now call local derivative routines that expect ghost cells.

Notes & tips



 The tags 11/12 must be unique per communicator usage; if you have other sends, pick different 

tags or include rank in tag composition.

 If your decomposition differs (e.g., different axis slab), adapt neighbor definition and which 
slices to send.

 For multi-cell ghost layers (e.g., 2+ ghost cells), send/receive the corresponding number of 
slices (send block [:, 1:1+nghost] and receive into [:, 0:nghost], etc.)

 For non-periodic BCs, send/recv only where neighbor exists and set ghost cells to boundary 
values otherwise.

B — Numba-accelerated diagnostics
These routines expect the ghost-filled local slab arrays described above:

 u_local shape: (4, n0_local+2, N, N, N) (dtype float64 or float32)

 omega_out and rho_q_out will be computed with the same interior shape (n0_local, 
N, N, N) (ghosts trimmed off on output).

We use numba.njit(parallel=True) for speed. The connected-component lobe counting is left 

as a Python routine or can use scipy.ndimage.label (not numba); it's more robust to rely on that 

or a C/C++ library for large grids — I include a simple Python BFS fallback after the numba ops.

Install: pip install numba (use same Python env as MPI). Numba accel is local per 
process.

# numba_diagnostics.py
import numpy as np
from numba import njit, prange

# ---- Numba: compute vorticity components and vorticity norm ----
@njit(parallel=True)
def compute_vorticity_and_norm_numba(u, dx, out_omega01, out_omega02, out_omega03,
                                     out_omega12, out_omega13, out_omega23, 
out_norm):
    """
    u: shape (4, n0+2, N, N, N) with ghosts on axis0.
    dx: grid spacing (assumed same on all axes)
    out_* arrays: preallocated arrays with shape (n0, N, N, N) for interior only
    Finite central differences using neighbor offsets (periodic handled by ghost 
cells).
    """
    # locals for indexing
    _, n0g, N, _, _ = u.shape
    n0 = n0g - 2  # interior count
    # helper offsets: axis mapping:
    # axis indices for u: 0->component, 1->axis0 (with ghosts), 2->axis1, 3->axis2, 
4->axis3
    for i0 in prange(n0):
        gi0 = i0 + 1  # global index including ghost offset



        for i1 in range(N):
            im1 = (i1 - 1) % N
            ip1 = (i1 + 1) % N
            for i2 in range(N):
                im2 = (i2 - 1) % N
                ip2 = (i2 + 1) % N
                for i3 in range(N):
                    im3 = (i3 - 1) % N
                    ip3 = (i3 + 1) % N

                    # central derivatives
                    # d/dx0 u_j  ~ (u[j,gi0+1,i1,i2,i3] - 
u[j,gi0-1,i1,i2,i3])/(2dx)
                    # d/dx1 u_j  ~ (u[j,gi0,ip1,i2,i3] - u[j,gi0,im1,i2,i3])/(2dx)
                    # etc.

                    # compute partials we need for omega_ij (6 components)
                    # omega01 = d0 u1 - d1 u0
                    d0_u1 = (u[1, gi0+1, i1, i2, i3] - u[1, gi0-1, i1, i2, 
i3])/(2.0*dx)
                    d1_u0 = (u[0, gi0, ip1, i2, i3] - u[0, gi0, im1, i2, 
i3])/(2.0*dx)
                    o01 = d0_u1 - d1_u0

                    # omega02 = d0 u2 - d2 u0
                    d0_u2 = (u[2, gi0+1, i1, i2, i3] - u[2, gi0-1, i1, i2, 
i3])/(2.0*dx)
                    d2_u0 = (u[0, gi0, i1, ip2, i3] - u[0, gi0, i1, im2, 
i3])/(2.0*dx)
                    o02 = d0_u2 - d2_u0

                    # omega03 = d0 u3 - d3 u0
                    d0_u3 = (u[3, gi0+1, i1, i2, i3] - u[3, gi0-1, i1, i2, 
i3])/(2.0*dx)
                    d3_u0 = (u[0, gi0, i1, i2, ip3] - u[0, gi0, i1, i2, 
im3])/(2.0*dx)
                    o03 = d0_u3 - d3_u0

                    # omega12 = d1 u2 - d2 u1
                    d1_u2 = (u[2, gi0, ip1, i2, i3] - u[2, gi0, im1, i2, 
i3])/(2.0*dx)
                    d2_u1 = (u[1, gi0, i1, ip2, i3] - u[1, gi0, i1, im2, 
i3])/(2.0*dx)
                    o12 = d1_u2 - d2_u1

                    # omega13 = d1 u3 - d3 u1
                    d1_u3 = (u[3, gi0, ip1, i2, i3] - u[3, gi0, im1, i2, 
i3])/(2.0*dx)
                    d3_u1 = (u[1, gi0, i1, i2, ip3] - u[1, gi0, i1, i2, 
im3])/(2.0*dx)
                    o13 = d1_u3 - d3_u1

                    # omega23 = d2 u3 - d3 u2
                    d2_u3 = (u[3, gi0, i1, ip2, i3] - u[3, gi0, i1, im2, 
i3])/(2.0*dx)
                    d3_u2 = (u[2, gi0, i1, i2, ip3] - u[2, gi0, i1, i2, 
im3])/(2.0*dx)
                    o23 = d2_u3 - d3_u2



                    # store
                    out_omega01[i0, i1, i2, i3] = o01
                    out_omega02[i0, i1, i2, i3] = o02
                    out_omega03[i0, i1, i2, i3] = o03
                    out_omega12[i0, i1, i2, i3] = o12
                    out_omega13[i0, i1, i2, i3] = o13
                    out_omega23[i0, i1, i2, i3] = o23

                    # compute norm = sqrt(0.5 * sum omega_ij^2)
                    s = 0.5*(o01*o01 + o02*o02 + o03*o03 + o12*o12 + o13*o13 + 
o23*o23)
                    out_norm[i0, i1, i2, i3] = np.sqrt(s)

    return  # results written in-place

# ---- Numba: compute charge-proxy rho_q = alpha * div(P) with P^i = eps^{ijkl} u_j 
omega_{kl} ----
@njit(parallel=True)
def compute_charge_proxy_numba(u, o01, o02, o03, o12, o13, o23, dx, alpha, 
rho_q_out):
    """
    Inputs:
      u: (4, n0+2, N, N, N) including ghosts
      oij: interior omega arrays shape (n0, N, N, N)
      rho_q_out: preallocated interior array shape (n0, N, N, N) (output)
    Formula used (consistent with earlier exposition):
      P0 =  u1 * o23 - u2 * o13 + u3 * o12
      P1 = -u0 * o23 + u2 * o03 - u3 * o02
      P2 =  u0 * o13 - u1 * o03 + u3 * o01
      P3 = -u0 * o12 + u1 * o02 - u2 * o01
      rho_q = alpha * (d0 P0 + d1 P1 + d2 P2 + d3 P3)
    Note: derivatives use central finite difference; ghost cells required for 
axis0.
    """
    _, n0g, N, _, _ = u.shape
    n0 = n0g - 2
    for i0 in prange(n0):
        gi0 = i0 + 1
        for i1 in range(N):
            im1 = (i1 - 1) % N
            ip1 = (i1 + 1) % N
            for i2 in range(N):
                im2 = (i2 - 1) % N
                ip2 = (i2 + 1) % N
                for i3 in range(N):
                    im3 = (i3 - 1) % N
                    ip3 = (i3 + 1) % N

                    # get u components at required positions
                    u0 = u[0, gi0, i1, i2, i3]
                    u1 = u[1, gi0, i1, i2, i3]
                    u2 = u[2, gi0, i1, i2, i3]
                    u3 = u[3, gi0, i1, i2, i3]

                    # omega at interior position
                    w01 = o01[i0, i1, i2, i3]
                    w02 = o02[i0, i1, i2, i3]
                    w03 = o03[i0, i1, i2, i3]
                    w12 = o12[i0, i1, i2, i3]



                    w13 = o13[i0, i1, i2, i3]
                    w23 = o23[i0, i1, i2, i3]

                    # compute P components at center
                    P0 = u1 * w23 - u2 * w13 + u3 * w12
                    P1 = -u0 * w23 + u2 * w03 - u3 * w02
                    P2 = u0 * w13 - u1 * w03 + u3 * w01
                    P3 = -u0 * w12 + u1 * w02 - u2 * w01

                    # derivatives: d0 P0 uses ghosts at gi0+1 and gi0-1 (access u's 
ghost areas as needed)
                    # but P arrays are not available at ghost indices; approximate 
d0 P0 via computing P0 at shifted indices:
                    # compute P0 at gi0+1 center: need u at gi0+1 index and omega 
at i0+1 index
                    # for simplicity here we compute central diff of P components 
by reconstructing P at neighbors
                    # compute neighbor P0_plus (approx)
                    # P0_plus uses u components at gi0+1 and w_ij at i0+1
                    u0_p = u[0, gi0+1, i1, i2, i3]; u1_p = u[1, gi0+1, i1, i2, i3]
                    u2_p = u[2, gi0+1, i1, i2, i3]; u3_p = u[3, gi0+1, i1, i2, i3]
                    # neighbor omega values - we don't have oij at i0+1 index in 
inputs? but we do: o arrays are interior and aligned to i0 indices.
                    # So need to fetch from arrays at i0+1 (exists if interior), 
else approximate via same position.
                    # For correctness, ensure o arrays include neighbor interior 
cells or compute a ghosted omega before.
                    # For now assume o arrays are defined for index i0 and i0+1 etc 
(i.e., caller prepared ghosted omega). Simpler: compute derivatives in axis0 by 
using u's neighbor velocities and interior omegas as approximation.
                    # To keep code concise, we'll compute spatial derivatives for P 
components using u neighbors and current omegas (approx).
                    # d0 P0 approx:
                    # compute P0_minus and P0_plus using available u at gi0-1 and 
gi0+1 and omega at same i0 (approx)
                    u0_m = u[0, gi0-1, i1, i2, i3]; u1_m = u[1, gi0-1, i1, i2, i3]
                    u2_m = u[2, gi0-1, i1, i2, i3]; u3_m = u[3, gi0-1, i1, i2, i3]
                    P0_p = u1_p * w23 - u2_p * w13 + u3_p * w12
                    P0_m = u1_m * w23 - u2_m * w13 + u3_m * w12
                    d0P0 = (P0_p - P0_m) / (2.0*dx)

                    # d1 P1: need P1 at ip1 and im1 (use u at same gi0)
                    u0_ip1 = u[0, gi0, ip1, i2, i3]; u1_ip1 = u[1, gi0, ip1, i2, 
i3]
                    u2_ip1 = u[2, gi0, ip1, i2, i3]; u3_ip1 = u[3, gi0, ip1, i2, 
i3]
                    P1_ip1 = -u0_ip1 * w23 + u2_ip1 * w03 - u3_ip1 * w02
                    u0_im1 = u[0, gi0, im1, i2, i3]; u1_im1 = u[1, gi0, im1, i2, 
i3]
                    u2_im1 = u[2, gi0, im1, i2, i3]; u3_im1 = u[3, gi0, im1, i2, 
i3]
                    P1_im1 = -u0_im1 * w23 + u2_im1 * w03 - u3_im1 * w02
                    d1P1 = (P1_ip1 - P1_im1) / (2.0*dx)

                    # d2 P2
                    u0_ip2 = u[0, gi0, i1, ip2, i3]; u1_ip2 = u[1, gi0, i1, ip2, 
i3]
                    u2_ip2 = u[2, gi0, i1, ip2, i3]; u3_ip2 = u[3, gi0, i1, ip2, 
i3]



                    P2_ip2 = u0_ip2 * w13 - u1_ip2 * w03 + u3_ip2 * w01
                    u0_im2 = u[0, gi0, i1, im2, i3]; u1_im2 = u[1, gi0, i1, im2, 
i3]
                    u2_im2 = u[2, gi0, i1, im2, i3]; u3_im2 = u[3, gi0, i1, im2, 
i3]
                    P2_im2 = u0_im2 * w13 - u1_im2 * w03 + u3_im2 * w01
                    d2P2 = (P2_ip2 - P2_im2) / (2.0*dx)

                    # d3 P3
                    u0_ip3 = u[0, gi0, i1, i2, ip3]; u1_ip3 = u[1, gi0, i1, i2, 
ip3]
                    u2_ip3 = u[2, gi0, i1, i2, ip3]; u3_ip3 = u[3, gi0, i1, i2, 
ip3]
                    P3_ip3 = -u0_ip3 * w12 + u1_ip3 * w02 - u2_ip3 * w01
                    u0_im3 = u[0, gi0, i1, i2, im3]; u1_im3 = u[1, gi0, i1, i2, 
im3]
                    u2_im3 = u[2, gi0, i1, i2, im3]; u3_im3 = u[3, gi0, i1, i2, 
im3]
                    P3_im3 = -u0_im3 * w12 + u1_im3 * w02 - u2_im3 * w01
                    d3P3 = (P3_ip3 - P3_im3) / (2.0*dx)

                    divP = d0P0 + d1P1 + d2P2 + d3P3
                    rho_q_out[i0, i1, i2, i3] = alpha * divP

    return  # in-place write

Important caveats & usage notes

 The compute_vorticity_and_norm_numba routine assumes ghost layers are present on 

axis0 (so central differences never sample out-of-bounds). It uses periodic wrapping for axes 1–
3 via % N.

 The compute_charge_proxy_numba does a simplified neighbor evaluation for axis0 

derivatives — to be formally correct you should precompute ghosted omega arrays as well 

(i.e., extend oij arrays with one ghost layer in axis0) so the derivative uses consistent centered 

neighbors. The code currently approximates neighbor omegas by using interior omegas; for best 
accuracy, compute omega with ghost layers too (call 

compute_vorticity_and_norm_numba on a slightly extended domain).

 Numba requires arrays to be C-contiguous for best performance. Ensure inputs are 
np.ascontiguousarray(...).

 For large N this code is memory- and CPU-heavy but will be substantially faster than pure 

Python loops.

Connected-component (3-slice) lobe counting — options
For reliable and fast connected-component labelling on 3D slices:

1. Preferred: scipy.ndimage.label (fast, compiled C). Usage (rank that has the slice):

from scipy.ndimage import label



mask = (rho_slice < threshold)   # boolean
labeled, num = label(mask)  # default connectivity=1 (6-neighbor); choose structure 
for 18- or 26-neighbor

2. If SciPy unavailable: use the Python BFS flood-fill version provided earlier — works but 
slower. For moderate N it will still be OK per-rank.

3. Parallel approach: if slices are split across ranks (rare for a single x4 slice), you'll need a 
distributed connected-component algorithm — more complex; avoid by ensuring a single rank 
contains the full slice (use slab decomposition axis not aligned with slice axis), or gather the 
needed slice to rank 0 before labelling.

How to plug everything together (usage recipe)
1. Set up local arrays u_interior shape (4, n0_local, N, N, N) (no ghosts yet).

2. Allocate ghosted array u_local = np.zeros((4, n0_local+2, N, N, N), 
dtype=u_interior.dtype) and fill interior u_local[:,1:1+n0_local,:,:,:] 
= u_interior.

3. Call exchange_ghost_cells_axis0(u_local, N, counts, starts, 
axis0_start) to populate ghosts.

4. Allocate outputs for omegas and norm: shape (n0_local, N, N, N) for each.

5. Call compute_vorticity_and_norm_numba(u_local, dx, ...) to fill omega 

arrays and norm.

6. (Optional) create ghosted omega arrays if needed, or ensure derivatives in axis0 use ghost 

layers.

7. Call compute_charge_proxy_numba(u_local, o01, o02, ..., dx, 
alpha, rho_q_out) to get rho_q.

8. Gather slice of rho_q to rank 0 (if needed) and call scipy.ndimage.label or Python 

BFS to count lobes.

9. MPI reduce any global integrals (energy, circulation) as needed.

If you want next: I can

 adapt the halo exchange to 2-cell ghost layers and provide exact send/recv shapes, or

 produce a Cython/C++ implementation of the connected-component labeller for large 3D slices 
(fast and MPI-friendly).

Which do you want me to produce next?


	Detailed reasoning (particle-by-particle)
	Electron — why hyper-toroid #2 fits best
	Proton — why #8 is a plausible candidate
	Neutron — hybrid (proton + electron) entwined hyper-toroids

	What I would do next (concrete computational / experimental program)
	Key advantages of Cobb’s assignments (why I find them compelling)
	Primary obstacles / what would convince me it’s true
	Final, compact verdict
	Short primer (shared ingredients for all runs)
	Experiment 1 — Existence & stability of the single-lobe hyper-toroid (Electron test)
	Experiment 2 — Existence & stability of the three-lobe hyper-toroid (Proton test)
	Experiment 3 — Entwined hybrid and decay dynamics (Neutron test)
	Experiment 4 — Probe scattering & electromagnetic form-factor proxy
	Experiment 5 — Parameter sweep: stability map & precision observables (g-factor, dipole moment proxies)
	Practical mapping: how to get from CFD outputs to “observables”
	Practical shortcuts / computational economy
	Resources & approximate compute needs
	Final checklist: what outcome convinces vs. falsifies
	1) Template Python initial-condition builder (pseudocode / runnable-style)
	2) Minimal mathematical note — governing equations, vorticity, diagnostics
	A. Governing PDEs (4 spatial dimensions)
	B. Vorticity in 4D — the antisymmetric 2-form / tensor
	C. Generalized circulation and topological diagnostics
	D. Observables / proxies mapped from CFD fields
	E. Discrete numerical formulas (what to implement)
	F. Practical parameter mapping & calibration

	Practical final notes + checklist to implement
	A — MPI-enabled initial-condition generator (template)
	B — Diagnostics / postprocessing routines (Python module)
	Quick implementation plan & tips
	A — 4-D MPI halo-exchange (slab decomposition on axis0)
	B — Numba-accelerated diagnostics
	Connected-component (3-slice) lobe counting — options
	How to plug everything together (usage recipe)


