My question to ChatGPT: (on July 30, 2025)

In three-dimensional space a bathtub vortex can have only one shape and run clockwise or counter clockwise. What are all the possible variations of rotation in fourdimensional space?

Its answer:

You're now digging into the **rotation group of 4D space**, which leads directly into the mathematics of **SO(4)** — the group of rotations in 4D Euclidean space.

This opens up a much richer landscape than in 3D. Let's go step-by-step.

1. Rotations in 3D (SO(3)) – The Bathtub Vortex

In 3D, all rotations happen **around a single axis**. That means:

- Any rotation can be described by:
 - **One plane of rotation** (perpendicular to the axis),
 - One angular velocity, and
 - **One direction** (clockwise or counterclockwise).
- Result: a vortex like a bathtub drain can spin **clockwise** or **counterclockwise**, but always in a single plane.

So, 1 shape \times 2 directions = 2 variants.

2. Rotations in 4D (SO(4)) – Richer Possibilities

In 4D, the situation is **fundamentally different**.

Key Fact:

In 4D, every rotation can be decomposed into two simultaneous independent rotations in two orthogonal planes.

This is unique to 4D — it doesn't happen in 3D or 2D.

That means a vortex-like structure in 4D (such as a "4D bathtub vortex") can spin:

- In **plane A** at angular velocity $\omega 1 \omega_1 = 1$,
- And in **plane B** at angular velocity ω2\omega_2,

• And the planes are **independent** and **orthogonal**.

This is known as a **double rotation**.

🔢 3. Types of Rotation in 4D

Let's classify the possible rotation patterns:

Type	Description	Degrees of Freedom
Simple rotation	Rotation in a single plane; no motion in the orthogonal plane	Like 3D rotation
Double rotation	Independent rotation in two orthogonal planes	Unique to 4D
Equal double rotation	Both planes rotate at same speed	Special symmetry
Opposite double rotation	One clockwise, one counter-clockwise	Possible in 4D only
Clifford rotation	All directions rotate uniformly — maximal symmetry	Think hypersphere spin
Degenerate rotation	One plane rotates, the other has zero rotation	Reduces to simple

🚫 4. Visualizing the Planes of Rotation

In 4D, you can choose rotation planes among:

- x-y
- X-Z
- X-W
- y-z
- y-w
- z-w

You pick **two orthogonal planes**. That's what gives rotation its multidimensional character.

There are (62)=15\binom $\{6\}\{2\}=15$ possible plane pairs, but only **3 mutually orthogonal planes** exist for a 3D object embedded in 4D. So, most structures involve 2 planes at most.

5. Total Variations of 4D Vortex Rotation

Each 4D vortex rotation can be classified by:

1. **Choice of two planes** → finite possibilities (from dimension constraints).

- 2. **Direction in each plane** \rightarrow clockwise or counterclockwise (\times 2).
- 3. **Speed in each plane** \rightarrow any real positive value.
- 4. **Relative angular velocities** → matched, mismatched, opposing.

Infinite total variations due to continuous speed values, but **discrete classes** of behavior:

Class	Rotation Pattern
Single-plane (simple)	Like 3D vortex, but only in one 2D slice
Dual same-direction	Both planes spin in the same sense
Dual opposite-direction	One clockwise, one counter-clockwise
Symmetric (equal-speed)	Clifford-like uniform rotation
Asymmetric (unequal-speed)	General double rotation

In 3D:

- One rotation plane,
- One spin direction,
- Two total vortex variants.

In 4D:

- Two independent rotation planes,
- Each with:
 - Direction: clockwise or counterclockwise,
 - Speed: continuous range,
- Rotation types: simple, double, symmetric, asymmetric, opposing.

Result:

Infinitely many rotational variations of a 4D vortex, falling into **several distinct classes**, including types that have **no 3D analog**.