
========
My question to ChatGPT:    (on July 31, 2025)

To simulate Pandemonial Dynamics, can snap-to-grid be discarded? 

Its answer:

Yes, when simulating Pandemonial Dynamics, a snap-to-grid can be discarded.

According to Stephen Euin Cobb, this is a fortunate aspect for those developing the necessary 4D 
Computational Fluid Dynamics (CFD) software. The reason for this is that there are no hard surfaces 
in his model that would act as an impediment to flowing fluid.

Instead of needing a grid for hard surfaces, the simulations should focus on modeling:

• Fluid vortexes 
• Fluid rubbing against fluid 
• Fluid responding to the impacting material 

========
My question to ChatGPT:    (on July 31, 2025)

If a 3D-CFD project did not need any snap-to-grid calculations—only fluid against fluid 
friction and compression—how much of a savings might be realized by discarding the 
snap-to-grid? Give your answer in terms of computational time saved when running 
the simulation, and in reduced programming complexity when modifying the software. 

Its answer:

If your project focuses solely on fluid-against-fluid friction and compression, and therefore does not 
require "snap-to-grid" calculations (which typically refer to the process of discretizing or conforming 
complex solid geometries onto a computational grid or mesh), you could realize significant savings in 
both computational time and programming complexity.

Based on the provided sources:

• Understanding "Snap-to-Grid" in CFD: In the context of Computational Fluid Dynamics 
(CFD), particularly with methods like the Lattice Boltzmann Method (LBM) or finite 
element/volume methods, "snap-to-grid" is analogous to voxelization or the process of 
representing intricate physical boundaries (like solid objects) within a discrete grid structure. 
The sources indicate that even without complex solid boundaries, fluid-fluid interaction still 



occurs on a grid. Therefore, "discarding snap-to-grid" implies removing the need for complex 
boundary handling, not eliminating the grid entirely for fluid simulation. 

Computational Time Saved:

• Elimination of Voxelization/Meshing Overhead: Direct operations related to mapping 
complex geometries to the grid, such as solid voxelization, can be computationally intensive. 
FluidX3D, a lattice Boltzmann CFD software, significantly optimized its solid voxelization 
from "minutes to milliseconds" per operation, implying that before optimization, this step was a 
considerable time sink. If these operations are completely unnecessary, this time, whether 
minutes or milliseconds, would be entirely saved per simulation run, especially for cases with 
moving or deforming geometries that would require frequent re-voxelization. 

• Faster Startup Times: Geometry initialization and sanity checks, which often involve complex 
"snap-to-grid" processes, contribute to the overall simulation startup time. Eliminating these 
complex initializations would lead to faster preparation before the main fluid simulation begins. 

• Reduced Adaptive Meshing/Simplification Overheads: When dealing with complex 
geometries, techniques like adaptive meshing or geometry simplification are employed to 
optimize accuracy and convergence. These processes, while beneficial for complex scenarios, 
add their own computational burden. Without the need for snap-to-grid, these optimizations 
would be irrelevant, saving the time spent on their execution. 

• Focus on Core Fluid Dynamics: The benchmarks for FluidX3D, when run without extensions 
and in an empty cubic box (representing pure fluid-fluid interaction), show the baseline 
performance (MLUPs/s) for the core LBM calculations. This baseline performance would 
remain as fluid-fluid friction and compression still require grid-based computations. The 
savings come relative to scenarios where the "snap-to-grid" processes would add significant 
computational overhead on top of this baseline. 

Reduced Programming Complexity:

• Removal of Boundary Handling Code: A substantial portion of the programming complexity 
in CFD software often lies in handling and implementing various boundary conditions, 
especially for solid-fluid interfaces. Features like "TYPE_S" for stationary or moving solid 
boundaries, and the algorithms for voxelizing and re-voxelizing geometries, would no longer be 
needed. FluidX3D's update history frequently mentions bug fixes and optimizations related to 
voxelization, mesh handling, and moving objects, indicating the inherent complexity of these 
features. 

• Simplified Initialization and Update Logic: The code paths for initializing and updating 
complex mesh structures around objects, or for computing forces and torques on these objects, 
would be eliminated or greatly simplified. This reduces the need for intricate algorithms like 
those for high-order mesh generation, which are challenging, especially with curved geometries. 

• Lower Maintenance Burden: As evidenced by the numerous bug fixes related to voxelization 
and mesh rendering in FluidX3D's development history, these features are sources of potential 
errors and require ongoing maintenance. Discarding them would significantly reduce the "bug 
surface" of the software, making it easier to maintain, debug, and extend, as developers would 
not need to account for how complex geometries interact with the underlying grid. 



• Fewer Parameters and Tuning: The software would no longer require parameters for defining 
and tuning complex boundary conditions or mesh adaptation strategies, simplifying the 
configuration and use of the simulation. 

========
My question to ChatGPT:    (on July 31, 2025)

How might these savings be altered by modifying the software to simulate 4D fluid 
flows instead of 3D fluid flows? Might we save even more, or perhaps less? 

Its answer:

If a project did not need any "snap-to-grid" calculations, which we've established in the context of 
Computational Fluid Dynamics (CFD) refers to the complex processes of discretizing or conforming 
intricate solid geometries onto a computational grid or mesh, there would indeed be significant savings 
in a 3D fluid simulation. These savings come from eliminating the overhead of voxelization, meshing, 
and complex boundary handling for solid-fluid interfaces.

However, if you were to modify the software to simulate 4D fluid flows (meaning four spatial 
dimensions) instead of 3D, the nature of these savings would be altered, likely leading to less overall 
savings, and a significantly more demanding project.

Here's a breakdown of how these savings might change:

1. Computational Time Saved:

• Savings from Discarding Complex Boundaries (Snap-to-Grid): Even Greater, but 
Overwhelmed.

• If "snap-to-grid" were hypothetically needed for 4D solid boundaries, the computational 
cost of generating and managing high-order meshes for curved 4D geometries would be 
exponentially more challenging and time-consuming than in 3D. The issue of cells 
overlapping near curved boundaries, a pacing item in 3D, would be exacerbated in 4D. 
Therefore, not having to perform these tasks for 4D would represent an even larger 
relative saving in that specific area. 

• FluidX3D, for instance, optimized its 3D solid voxelization from "minutes to 
milliseconds", indicating the previous substantial time sink. If this problem were 
extended to 4D, the initial unoptimized time could be far greater, making the savings 
from discarding it similarly larger. 

• Cost of Core Fluid Dynamics Calculations: Dramatically Increased, Far Outweighing 
Savings.



• The primary challenge in moving to 4D is the exponential increase in the number of 
computational cells required for fluid-fluid interaction. If a 3D simulation uses a grid 
with, for example, $N \times N \times N$ cells, a 4D simulation with similar spatial 
resolution would require $N \times N \times N \times N$ cells. This means the 
computational work for "fluid against fluid friction and compression" would be 
multiplied by an additional factor of $N$ (the resolution along the new dimension). 

• FluidX3D's performance is measured in "MLUPs/s" (million lattice cells updated per 
second). While the rate of updates per cell might remain similar, the total number of 
cells would explode, leading to a vastly longer overall simulation time. 

• This increased dimensionality would also lead to massive memory demands. FluidX3D 
is highly optimized to reduce VRAM footprint in 3D (e.g., 55 Bytes/cell for D3Q19, 
allowing 19 Million cells per 1 GB VRAM). Extending this to 4D would push memory 
requirements beyond current hardware capabilities much faster, potentially requiring 
even more complex multi-GPU setups than already exist for 3D simulations. The 64-bit 
indexing implemented for very large 3D domains in FluidX3D hints at the significant 
scaling issues that would become paramount in 4D. 

Conclusion for Computational Time: While the relative savings from avoiding complex 4D 
boundary handling would be greater, the absolute computational time for the core fluid 
simulation would increase drastically, likely overwhelming any savings. The overall project 
would demand significantly more computational resources and time.

2. Reduced Programming Complexity:

• Savings from Discarding Complex Boundaries (Snap-to-Grid): Present, but Offset by New 
Complexities.

• The specific code for handling solid boundary conditions, voxelization, and mesh 
updates (e.g., TYPE_S flags, functions for force/torque computation on objects, and 

voxelize_stl() in FluidX3D) would indeed be removed. This represents a 

significant simplification as these features are a common source of bugs and require 
continuous maintenance, as evidenced by FluidX3D's update history. 

• New Complexities from 4D Fluid Dynamics: Substantial and Overwhelming.

• Conceptual Difficulty: The most significant challenge is the inherent difficulty for 
humans to visualize and reason about four spatial dimensions. This mental hurdle 
directly translates into increased programming complexity when designing algorithms, 
debugging, and maintaining the code. 

• Algorithm Extension: Even fundamental fluid dynamics algorithms like the Flux 
Reconstruction (FR) / Correction Procedure using Reconstruction (CPR) methods, while 
extensible from 1D to 2D and 3D, would face new challenges in 4D, particularly if they 
involve non-Cartesian or unstructured meshes. 

• Data Structures and Indexing: Managing indices and accessing data in a 4D grid 
would introduce a new layer of complexity for data structures and memory management, 
even with advanced optimizations like those in FluidX3D for 3D. 



• Visualization: While not directly part of the simulation's core, developing meaningful 
visualization tools for 4D fluid flow would be an immense programming challenge in 
itself, as the human brain cannot directly perceive 4D spatial data. 

• Debugging and Testing: The increased dimensionality and non-intuitive nature of 4D 
space would make identifying and fixing bugs significantly harder, prolonging the 
development and testing phases. 

Conclusion for Programming Complexity: Although specific complexity related to solid 
boundary handling is removed, the inherent complexity of developing and maintaining a 
fluid simulation in four spatial dimensions would significantly increase, leading to much 
higher overall programming complexity and effort.

In summary, while you would gain more significant relative savings by avoiding the extremely 
difficult task of "snap-to-grid" for hypothetical 4D solid boundaries, the decision to simulate 4D fluid 
flows (four spatial dimensions) instead of 3D would result in a net increase in both computational 
time and programming complexity overall. You would effectively be solving a much harder 
fundamental problem, which far outweighs the benefits of discarding one specific, albeit complex, 
feature.


